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(1) a wind model for describing airflow in complex terrain using minimal
input data

(2) a transport and diffusion model capable of simulating transport and
diffusion under non-steady, spatially-varying conditions

(3) a method for producing realistic small-scale variabilities in
concentration distributions

(4) a method for estimating the required probabilities from the small-
scale distributions.

The first two items have been completed and are described. The wind model FORTRAN
r source code is included in an appendix. The transport and diffusion model was

previously described, and a Users' Guide has been issued separately.

.Lidar cross-sections through smoke plumes were analyzed and a preliminary
method for estimating the likelihood of finding a clear path through the plume
is discussed.

The literature was reviewed to find a framework for generating the required
small-scale concentration distributions. The concept of fractal dimension is
shown to have considerable promise. An extensive literature review and biblio-
graphy on the subject of scaling, fractal dimension, and applications to
atmospheric processes is included as an appendix. The report describes the
research necessary to apply the identified concepts and to complete the desired
system of models.
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ABSTRACT •

A program was undertaken to develop a system of models for describ-
ing transport and diffusion of smokes and agents in complex terrain
under time-varying meteorological conditions. The ultimate goal is to
provide the probabilities for observing concentrations (point or path-
integrated) above a specified threshold. The necessary components to
achieve this goal are:

(1) a wind model for describing airflow in complex terrain using
minimal input data

(2) a transport and diffusion model capable of simulating trans-
port and diffusion under non-steady, spatially-varying condi-
tions

(3) a method for producing realistic small-scale variabilities in
concentration distributions

(4) a method for estimating the required probabilities from the
small-scale distributions.

The first two items have been completed and are described. The wind
model FORTRAN source code is included in an appendix. The transport and
diffusion model was previously described, and a Users' Guide has been
issued separately.

Lidar cross-sections through smoke plumes were analyzed and a
preliminary method for estimating the likelihood of finding a clear path
through the plume is discussed.

The literature was reviewed to find a framework for generating the
required small-scale concentration distributions. The concept of
fractal dimension is shown to have considerable promise. An extensive
literature review and bibliography on the subject of scaling, fractal
dimension, and applications to atmospheric processes is included as an
appendix. The report describes the research necessary to apply the
identified concepts and to complete the desired system of models.
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I INTRODUCTION

This final report under ARO Contract No. DAAG29-83-K-0009 summa-
rizes the most important results that have been obtained during the
course of this project. Detailed information is provided about those
research results that have not been described previously in detail, as
was done in the publications listed in Appendix A. This is in accord-
ance with the Army Research Office reporting instructions, which also
require a statement of the problem that was studied, given in the fol-
lowing section. The required list of participants in the project is
included as Appendix B; Appendices C and D present research accomplished
on this project, but not previously reported in detail.

Although the complex terrain airflow model has been described in
publications, no guide for users was published. Therefore, Appendix C
has been included to provide an abbreviated set of instructions, and a
listing of the source code for the wind model. Similarly, the review of
the applications of fractals to the study of atmospheric processes, and
the bibliography on the same topic that was compiled have not been
published to date. For completeness, they appear here as Appendix D.

j-a

d

,V " . - ' . . . , . ' " . , • , . . . • . - . . . . - . . , - . . . . . . , . . - . . . . .- , . .
o .. . .d. . . . - .- . . o . - . o o - . . " o . . .

I', "- ' 4 " "' -*1 ' ' - ' . . . . . . . . . . . . . . . % " . - . . . - , " , . . , ' . - . ,.



II STATEMENT OF THE PROBLEM STUDIED

This study has addressed the problem of modeling the behavior of
smoke plumes or agents in complex terrain during temporally and spa-
tially varying atmospheric conditions. In addition to the most probable

concentration distributions, an analytical framework was sought which

could be used to estimate the probabilities of encountering concentra-
tions (point or path-integrated) exceeding some specified value. This

is a large and difficult problem, and was divided into two major parts.

The first part of the problem was to develop a deterministic trans-

port and diffusion model that could be used to describe the "average" or
"most probable" concentration distribution. A non-steady-state Lagran-

gian model was developed that is very efficient and practical (Ludwig,

1984a,b, 1985a). However, it became apparent during the course of the

project that transport and diffusion models were no better than the wind

field and meteorological models used to provide inputs. Therefore, a
wind model was developed to use minimal observational data, and to be
efficient and practical enough for field use (Ludwig et al, 1985).

The more difficult part of the problem was to identify a framework
that could be used to estimate concentration probabilities. Two comple-

mentary task efforts were undertaken to attack this problem. First,
relevant data from past field tests and experiments were reviewed and
analyzed in an attempt to develop a statistical framework that could be
applied to real data to define the probability distributions that were

sought. The existing data were not completely adequate for this pur-
pose, but they were useful for developing promising approaches and

determining what further information might be needed. This approach

presumed that the spatial distribution of material could be known in

considerable detail, a presumption that cannot in fact be met, except in
the statistical sense. This leads to the second task where we sought

methods to describe small scale variabilities and concentrations realis-
t _±cally and in a fashion consistent with the larger scale features
determined by the general airflow and meteorological conditions.

In an effort to develop methods for defining relatively small-scale
variabilities, the literature was reviewed, and a promising approach was

identified. This approach is based on the use of fractals (e. g.

Lovejoy and Schertzer, 1986). There is evidence that fractals can be
used to provide the bridge between large-scale atmospheric features that

can be modeled deterministically and the important statistical proper-
ties of the small-scale features that cannot. Although we have not been

able to develop the complete statistical model, the information neces-
sary to complete the work is clearly defined.

In summary, the complete system that we are seeking will include
the following components:

3
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(1) A wind field generator that can be used with limited inputs
for generating 3-dimensional winds in complex terrain

(2) A deterministic transport and diffusion model that can define
the general, most probable concentration distribution associ-
ated with the plume or cloud of material

(3) A statistical model for generating realistic small-scale
concentration fluctuations within the plume

(4) A statistical model for calculating probability distributions
for point or path-integrated concentrations given the small-
scale concentration pattern.

Models were developed on this project that meet the requirements of the
first two items in the above list. The problems associated with (4)
were not completely solved, but enough progress was made so that it is
believed that there will be no fundamental difficulties in arriving at

such a model. The third item has proven to be by far the most diffi-
cult, but we feel that an approach involving the application of fractals
can be successful in providing the necessary information.

The remainder of this report discusses significant research
results. The findings with regard to the first two items above are more
complete, and papers and reports have already been prepared describing
results. The other, more preliminary findings, are described in some-
what more detail because papers have not yet been prepared. Although
these findings are still preliminary and tentative, we believe them to
be quite significant.

4
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III SUMMARY OF IMPORTANT RESULTS

A. Wind Model Description

As noted before, transport and diffusion models require accurate
specification of the wind fields. However, practical applications,
especially those of greatest interest to the Army, will generally be
restricted to the use of data from widely separated sites. Furthermore,
applications in the field must usually make do with very restrictive
computational facilities. The model described in Appendix C was devel-
oped to provide realistic wind fields using minimal input data, and
calculations that do not require a mainframe computer.

The model is described completely (including a FORTRAN77 source
code) in Appendix C. Very briefly, we attempted to devise a scheme that
made maximum use of the available observations and theoretical and
empirical relationships governing atmospheric processes. The result is
essentially a wind interpolation scheme that is constrained to satisfy
the principal of conservation of mass (nondivergence), and an empirical
relationship based on conservation of energy. The latter constraint
arises from the fact that there is a buoyant restoring force in a stably
stratified atmosphere whenever air is displaced from its equilibrium
position. Air displaced upward will be cooler (denser) than its sur-
roundings and subjected to a downward force, while downward-moving air
will have an upward restoring force. Work is required to move a volume
of air from its equilibrium altitude, and this results in an increase in
the potential energy of the displaced air. Hunt and Snyder (1980)
reasoned that the potential energy was gained at the expense of the
kinetic energy so that for a given wind speed and temperature stratifi-
cation, there is some maximum upward displacement that can be induced by
the underlying terrain. There will be a streamline for which this
upward displacement causes the air to rise just to the height of a
terrain obstacle. This is the "critical streamline." Air below this
altitude passes around the obstacle. Air above the critical streamline
flows over the obstacle. The validity of the critical streamline con-
cept seems to be well supported by field experiments (Lavery et al,
1982; Egan, 1984).

In its original form, the critical streamline was used to determine
whether or not a plume centerline would pass over a hill or around it.
The model described in Appendix C has extended the concept to the defi-
nition of three-dimensional flow fields. It is used to define the shape
of "flow surfaces" within which the streamlines lie. These surfaces may
intersect a terrain feature or pass over it. If they intersect, the
principle of mass conservation (nondivergence) forces the airflow to
pass around the obstacle. This relatively simple concept has been
implemented in the model described in Appendix C.

The model achieves the objectives of using minimal data. It uses a
vertical profile of temperature. It is likely that data from my single
Doppler acoustic sounder could be substituted for the temperature

5
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profile, presuming that the vertical fluctuation in the wind can be
related to the lapse rate. The model could be run with only a single
wind input. However, much better results will be obtained if three or
more surface observations are available so that estimates of upper-level
winds can be obtained from the geostrophic and thermal wind relation-
ships. Another alternative would be to have Doppler acoustic sounder,
pilot-balloon, or other estimates of winds aloft. In summary, the model
requires some estimate of stability stratification of the atmosphere and
can use whatever wind observations are available. Obviously, its accur-
acy increases with more input data.

The objective of computational efficiency has been met. The
samples given in Appendix C required only about 15 seconds of central
processing unit (CPU) time on a VAX 11/782 computer. The practicality
of the model is demonstrated by the fact that it has been incorporated
into a larger code being developed at the U.S. Army's Atmospheric
Sciences Laboratory at White Sands, New Mexico (Dr. R. Meyers, personal
communication, 1986). It is understood that this latter application is
on an IBM-AT computer.

B. Transport and Diffusion Model

The transport and diffusion models developed on this project have
been described elsewhere. Two versions have been written. The first
version was written in BASIC for use on an Apple-II or IBM-PC (Ludwig,
1984). That version was upgraded and converted to a second version in
FORTRAN77. A complete users' guide was prepared for the FORTRAN77
version as a Technical Project Report (Ludwig, 1985).

The transport and diffusion models were developed before the wind
model described in the preceding section. As a result, they were
designed to use the outputs from models that invoked only the mass-
consistency constraint. Small computers were slower and had more severe
memory constraints at the time the models were developed than they do
now, so attempts were made to reduce the computations required for the
wind fields. The method described by Ludwig and Byrd (1980) for
exploiting the linear properties of mass-consistent wind models was
employed so that most of the calculations could be done ahead of time on
a large machine, and then used to generate the winds from linear com-
binations of those precalculated solutions. The speed and available
memory of small computers is now such that the transport and diffusion
models developed earlier should probably be modified so that the winds
are calculated online, using the model described in the preceding sec-
tion. Time was not available to make this modification, although it
should not be particularly difficult.

The models use a Lagrangian puff approach to describe a continuous
emission. Each puff has a bivariate Gaussian concentration distribu-
tion. The puffs are moved according to the winds at their centers.
They expand according to the atmospheric stability at the time they are

6
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advected. As expansion causes the puffs to overlap, they are combinedto reduce required computation.

Concentrations over a grid of points at the surface are calculated
hourly by summing the contributions from all puffs within about three
standard deviations of the point. The usual assumptions of "reflection"
at the surface are used.

Details of the theory and its implementation can be found in two
publications prepared during the course of this contract (Ludwig, 1984,
1985).

C. Probability Analysis Framework for Point and Path Integrated

Concentrations

The framework that has evolved for assessing probabilities of
encountering various concentration levels (or path-integrated concentra-
tions) is a three step process:

(1) Average (or most probable) concentration patterns are calcu-
* lated from the deterministic wind and dispersion models

described above

(2) A subgrid scale spatial concentration pattern is superimposed

on the smooth pattern from Step 1

(3) Point or line-of-sight concentration probabilities are esti-
mated either from repeated realizations of Step 2, or from
values at similar locations or along similar paths from a

single subgrid-scale pattern.

The generation of realistic concentration patterns appears possible
by adapting existing methods for generating fields of specified fractal
dimension (Pentland, 1984; Lovejoy and Mandelbrot, 1985; Medler, Gelberg

v and Burkhart, 1986; Wilson et al, 1986). As noted by Medler et al
(1986), this requires knowledge of the fractal dimension of the patterns

• 'of smoke concentration in a plume. Securing this missing information
will be a major research effort. Section III-D describes the required
research program that was developed during this contract.

The relevance of fractals to this problem is described in Appendix
D which reviews recent developments in the use of fractals to describe
spatially inhomogeneous scalar and vector atmospheric fields. Several

methods are described for estimating fractal dimensions and generating
the corresponding fields. Since that review was written, other methods
have been identified which seem even more suitable for the anisotropic
atmospheric distributions (e.g. Wilson et al, 1986; Schertzer and
Lovejoy, 1986).

Figure 1 shows an example of one approach that has been taken to
o. estimate clear lines-of-sight from observed lidar cross-section data.

7
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Points have been plotted showing the distance from the center of mass of
a smoke plume on the abcissa versus distance to the nearest pixel whose
value (backscatter) is above a selected value. In Figure 1(a), only
lines-of-sight that are within 300 of the direction toward the center of
the plume have been included. The picture elements are nearly square,
about 20 m on a side. The clustering of points at the top of the plot
are those that pass unobstructed beyond the domain. As expected, the
open paths are shorter near the center of the plume. Figures 1(b),
1(c), and 1(d) show that it is increasingly likely that a clear line-of-
sight will be found in directions away from the plume center. The data
in Figure 1 could be converted easily to a probability function. Back-
scatter values along the paths could also be summed to obtain path-
integrated values whose probabilities of occurence could be estimated.

D. Description of Experimental and Theoretical Research Required to
Implement a Fractal-Based Probabilistic Methodology

A research plan was developed during the course of this contract to
provide a description of the effort needed to implement the probabilis-
tic framework described above. Four main tasks are required:

(1) Acquisition of data

(2) Development or refinement of fractal analysis techniques

(3) Data analysis and interpretation using fractal methodology

(4) Adaptation of available techniques or development of new ones
to generate fields with defined fractal and larger-scale
characteristics.

These are discussed in more detail in the following sections.

1. Data Acquisition

Analysis techniques for digitized lidar cross-sections have been
developed during the present effort. These techniques make use of a PDP
11/23 computer with a Peritech graphics package that facilitates visual
interpretation of the results. The digitized lidar backscatter cross-
sections have proven to be very amenable to automated analysis, but the
currently available data have some shortcomings, namely:

e They have limited spatial resolution, about 15 to 30 m horizon-
tal by 3 to 6 m vertical

* Most of the available data are for elevated, buoyant plumes and
far downwind distances.

The first shortcoming is not fundamental and could be corrected by
operating the equipment differently. It should be possible to achieve a
resolution of about 3 x 3 m.

. . , . -.

. • . , .° o-. - J -.- -,-. . • - - - - . .. . . -. .. . - -.- . .. *- . .B- -. \ V-. . •. . • °o



o-- -*. . . - . -.. 7, G.. *.- - -

The second shortcoming requires appropriate field tests which meet
the following criteria:

* Ground level release of smoke or other aerosol tracer material
(not dense enough to be opaque to the lidar)

* Higher resolution backscatter cross sections measured at 2 or 3
distances closer (about 0.5 to 2.5 km) to the source than cur-
rently available data

* Several meteorological conditions represented, e.g. stable
mornings, convective afternoons, neutral, transition periods,
etc.

Airborne lidar systems are available that could collect digitized
data with a resolution of a few meters as required (Uthe et al, 1980).

The availability and suitability of data from the stereo, multi-
spectral imaging systems (formerly referred to as MIDAS) that are oper-
ated at some Smoke Week tests (e.g. Farmer et al, 1986) should also be
explored. If these data could be used, they might obviate the need for
the special tests described above, especially if it is possible to
select planes through the smoke of different orientation so that the
degree of isotropy of the patterns could be tested and some of the newer
fractal analysis techniques (Schertzer and Lovejoy, 1986) could be
applied.

The output velocity fields from large eddy computer simulations are
another potential source of valuable information. However, there are
some significant difficulties involved with using these data. Foremost
among these is the problem of storing and retrieving the massive volume
of results that are generated, i.e. literally millions of numbers for
every few seconds of simulated time. Although this approach seems
attractive because of the ability to generate true ensembles of cases,
it is not clear that the problems are surmountable. If the data were
usable, "experiments" could be conducted to cover a variety of condi-
tions, e.g.:

e Different sizes and shapes of initial particle clouds

e Continuous releases in a field with mean transport
e Different locations if an inhomogeneous field is used.

Such computer experiments have the potential to identify relation-
ships between observable patterns of smoke diffusion and the charac-
teristics of atmospheric turbulence. Chorin's (1982) analysis of the
evolution of the vorticity field associated with a bent vortex tube
provides considerable encouragement for this kind of analysis.

10
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2. Develop Fractal Analys is Methods for Inhomogeneous and
Anisotropic Fields

Only two of several available fractal estimation methods have been
developed and used during the current research effort, and those two
methods were used under the assumption that the processes were iso-
tropic. Lovejoy and Schertzer (1986) have recently pointed out the
importance of anisotropy in the atmosphere. Some of the methods avail-
able for estimating fractal dimensions are:

(1) A subcell counting method (e.g. Mandelbrot, 1975; Ludwig and
Nitz, 1986)

(2) An average power spectrum method (e.g. Pentland, 1984)

(3) A method based on the probabilit y distribution of the differ-
ences in the variable versus separation distance (e.g.
Schertzer and Lovejoy, 1983)

(4 ) A method based on the relationship between the area and the
perimeter of regions enclosed by isopleths (Lovejoy and
Mandelbrot, 1985)

(5) A method for estimating "elliptical fractal dimension"

(Lovejoy and Schertzer, 1986) using a variation of the subcell
counting method (Schertzer and Lovejoy, 1986).

This is a rapidly evolving area of research and it will be essen-
tial that new methods be examined for applicability as they are devel-
oped. The fifth method listed above shows considerable promise because
of its ability to describe anisotropic features. It appears to be
particularly applicable to 3-d data like those from the stereo imaging
systems.

3. Data Analysis and Interpretation with Fractal Methods

Although several of the methods discussed above should be mathema-
tically equivalent, there are some differences that arise from the way
that they are applied, so a comparison of results is warranted. The

most important of the differences is between the cell counting method
and the others. In the isotropic case, the cell counting method defines
a fractal dimension for a topologically one-dimensional surface, the
isopleth. It is thought that the intersection of a surface and a plane
has a fractal dimension one less than that of the surface itself

(Mandelbrot, 1975) so it would be easy to reconcile the two approaches
except that isopleths tend to be arranged in concentric patterns about
the plume center. Therefore, the fractal dimensions of high-valued
isopleths will be more representative of the interior of the plume than
are the fractal dimensions of the lower value isopleths. The other
methods will have to be applied to fairly large subregions of the plume
in order to have samples that are sufficiently large to characterize the
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probability functions or spectral densities. These subregions are
likely to cut across a range of isopleth "rings".

The discussion of possible methodological differences in the pre-
ceding section points out the potential for differences from one part of
a plume to another. Without systematic examination, it is not clear
whether or not these differences will be found. At first, it seems as
though clean air entrainment at the edge of a plume might lead to a
different pattern than in the interior. However, this may only cause
differences in the amplitude of fluctuations, but their spatial pattern
may be the same. Stated differently, the slope of the spectral density
function may be the same although the amplitudes may be larger at the
edge than in the middle.

During periods of fumigation or lofting, part of the plume will be
in a stable layer and part in a more turbulent zone. Differences,
especially in the nature of any anisotropic effects are quite likely and
should be investigated.

The overall dimension of the plume almost certainly will set some
upper limit on the range over which scaling occurs. As noted earlier,
there are apt to be differences between the vertical and the horizontal.
The relationships between scaling range and plume dimension should be
examined.

Lidar cross sections taken through the widely dispersed plumes in
convective boundary layers have a very different appearance from the
more compact plumes found when there is less convective activity. It is
not certain whether or not these cases have a different fractal dimen-
sion, but at the very least, it seems reasonable to assume that the
"spheroscale"* will be changed by the presence or absence of convection.

If one assumes that the eddy scales affect the patterns of smoke
distribution within a plume, then there is reason to believe that there
will be variations with vertical position in the mixed layer. Near the
upper and lower boundaries of the convective mixing layer, vertical
motions are inhibited, so local patterns may be vertically compressed.
One obvious objective of an analysis of the vertical changes in fractal
dimension within the mixing layer would be to see if the spheroscale is
a function of the mixing height. An even more important objective would
be to relate the properties of smoke patterns to the statistics of the
eddy motions from large eddy simulation and field experiments.

"Spheroscale" is the term used by Lovejoy and Schertzer (1986) for the
scale at which the characteristic vertical and horizontal dimensions of
the pattern are equal.
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From the practical standpoint, an ability to relate the fractal
properties of smoke distributions to the prevailing meteorology would be
most important. It is doubtful that this could be done for the complete
range of meteorological conditions because of limitations on the condi-
tions under which lidar data can be collected. However, there already
exists a body of data covering a broad range of atmospheric stability,
wind speed and surface heating conditions. Future experiments should
extend these to other conditions and various positions within the mixed
layer.

If recent studies of turbulent diffusion modeling can serve as a
guide, then mixing depth (H), Monin-Obhukov length (L), convective
scaling velocity (w*), friction velocity (u,), wind fluctuations
(a^ and a ) and eddy heat flux are good candidate parameters for charac-
terizing Yhe meteorological conditions. For this reason, it would be
preferable to use data sets for which the appropriate special corollary
meteorological measurements were available. However, such is not always
the case, so it will often be necessary to estimate the appropriate
parameters from more conventional observations by following quidelines
such as those suggested by Holtslag et al (1985) or Hanna (1984).

4. Develop Appropriate Fractal Simulation Methods

The next step in the process will be to take the relationships
gleaned from the analysis described in the preceding section and use it
as the basis for specific fractal generation algorithms. It is not
necessary to develop entirely new approaches, but rather to use the
fractal characteristics derived from analysis and interpretation with
existing methods (e.g. Lovejoy and Mandelbrot, 1985; Norton, 1982; Voss,
1982; Wilson et al, 1986). It will be necessary to superimpose the
fractal patterns on the general distributions of concentration, such as
the frequently used Gaussian distribution.

A problem may be encountered if fractal characteristics vary over r
the area of a plume, as preliminary analysis suggests may be the case.
Most existing image generation algorithms have only to deal with pat-
terns and textures that have reasonably well defined edges rather than
smooth transitions from one to another. The random cylinder method of
Lovejoy and Mandelbrot (1985) appears promising if modified to use
elliptical cross-sections to account for anisotropy. The parameters of
the random generating function would be functions of location allowing
for the desired smooth transitions.

Once the appropriate spatial patterns can be generated, it will be
possible to combine them with the results from more conventional models
(e.g. complex terrain airflow and nonsteady state transport and diffu-
sion models) to generate more realistic spatial distributions of concen-
tration. These distributions can, in turn, serve as a basis for esti-
mates of the probability of exceeding specified point or path integrated
concentrations. Under the assumption that patterns remain "frozen" for
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time periods of a few seconds, estimates could be derived for the proba-
* bility that a given path Integrated concentration would not be exceeded

over some short time interval.
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I INTRODUCTION

As a general rule, sites from which wind observations are available
are widely separated. If the atmosphere is reasonably well mixed and
the terrain is flat, simple interpolation techniques can be used to
estimate winds at any given location between the observing sites. There
are many applications for which wind fields obtained by simple interpo-
lation techniques are not adequate. Any application that involves the
calculation of fluxes and concentrations will suffer if the wind field
has appreciable divergence. The most common of such applications is in
the modeling of transport and diffusion. A divergent wind field can

completely obliterate the effects of turbulent diffusion, chemical

reactions, and even transport in such models.

When complex terrain and stable atmospheric stratifications are
introduced, simple interpolation schemes can be quite misleading. Some"p

improvements can be achieved by invoking the principle of conservation
of mass to produce nondivergent wind fields, but there still remains the
question of whether air will flow over, or around an obstacle. The
result obtained by a transport and diffusion model is very dependent
upon the choice that is made. The effects extend beyond determining
which areas are affected by a plume; the magnitude of the effects is
also determined by the wind field. For example, a plume that impacts a
hill will produce much greater ground level concentrations than one that
passes to one side and stays well above the surface. There is an
obvious need for wind interpolation schemes that can estimate winds on a
three-dimensional grid, especially objective methods with few "adjust-
able constants" and modest computational requirements.

An ideal approach would invoke all the laws of thermodynamics and
fluid motion in the interpolation process. In essence, this would be a
planetary boundary layer model that incorporated all the available
observations. It is likely that it would be at least as complicated as
existing planetary boundary layer models, so that it could not be widely
used with inexpensive machines. This paper limits itself to a more
modest approach. The principle of conservation of mass (nondivergence)
has been invoked in several wind interpolation schemes (e.g., Sherman,
1978; Dickerson, 1978; Bhumralkar et al., 1980; Goodin et al., 1980; and
Endlich et al , 1982). The next logical step seems to be the incorpora-

tion of conservation of energy to account for the changes in potential
energy with vertical motion when the atmosphere is stably stratified.

Current approaches to wind field interpolation involve two steps.
First, winds are estimated at the points in a 2- or 3-dimensional grid
by some standard, unconstrained interpolation technique. The second
step is to adjust this initial wind field so that it satisfies some
specified constraints. The initial wind field is typically obtained by
linear interpolation, inverse distance (or inverse distance squared)
weighting or a Gaussian weighting scheme. Most commonly, the con-
straints involve conservation of mass. Sherman (1978) and Bhumralkar et
al (1980) both further constrain the adjustment so that it represents a
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"minimum" change in the initia] field required to reduce the divergence
(and convergence) below some secified level. Endlich (1967) has a more
general technique where the initial wind fields can be adjusted to
satisfy some specified fields of divergence and vertical vorticity
component. These approaches provide a useful starting point. Effects
of stable stratification on air flow are discussed in the next section
to provide the rationale for the method described later.

II BUOYANCY EFFECTS

The following discussion deals with those cases where potential
temperature increases with height, i.e., aO/az>O. Furthermore, we shall
only deal with the situations where the atmospheric processes are
approximately adiabatic. Thus, the following discussion assumes that no
condensation or evaporation takes place and the time scales are of the

order of a few hours or less, so that there will be a buoyant restoring
force whenever the air is displaced from its equilibrium position. Air
displaced upward will be cooler (denser) than its surroundings and
subjected to a downward force. Downward moving air will be warmer with
an upward restoring force. In either case, work is required to move a
volume of air from its equilibrium altitude, so there is a positive
change in the potential energy of the displaced air.

If we assume that the displacements are small enough so that the
higher order effects can be ignored (i.e., that the lapse rate is con-
stant over the displacement distance), then the restoring force is
proportional to the temperature difference between the displaced parcel
and its environment, which in turn is proportional to the displacement
distance (Az) and the difference between the ambient lapse rate (Y) and
the adiabatic (Y ). The corresponding acceleration (force per unit
mass) can be writgen as follows (e.g., Holmboe et al , 1948).

d z g - (Y Y Az = g Az ae
dt2 T d T az

The change in potential energy is obtained by integrating the above
expression with respect to z over the complete displacement distance.
This results in the following expression for the acquired potential
energy per unit mass (E):

E = 2g (Y _ Y )(Az)2 = -2g (Az)2 -_ (2)d a

where g is the acceleration due to gravity and T is the average tempera-

ture (OK) through the layer encompassed by Az
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Steady-state Lagrangian plume models have invoked energy considera-
tions in the concept of a critical dividing streamline height in order
to develop simple descriptions of plume behavior around terrain obsta-
cles in a stably stratified atmosphere (e.g., Lavery et al , 1982).
McNider et al (1984) attribute this concept to Hunt and Snyder (1980).
The critical streamline height (Hc ) is the height at which the kinetic
energy of the flow exactly matches the potential energy gained by rais-
ing the air to the top of the obstacle. Air above this height goes over
the obstacle. Below the critical streamline height, the air goes around
the obstacle, providing that wind speed increases with height. The
governing relationship can be written

z
12 U 2 _ g f (Z - z) - dz (3)

TH
H

C

The left side is the kinetic energy (per unit mass) of the flow at the
height of the critical streamline. The right side is the potential
energy (per unit mass) gained in lifting the air from the critical
streamline height to the height of the top of the obstacle (Z). If the
vertical temperature gradient is constant between Hc and Z, then Hc canbe expressed in terms of the bulk Froude number:

Hc = Z(1 Fr) (4)

where

U I \11/2
Fr = C g'zl (5)

For our purposes, it is more useful to restate this equivalence of
potential and kinetic energy in terms of a critical height, Zmax, the
highest height to which the air at height z could be propelled by the

local wind speed (u) against the local 38/3z. That critical height is
given by

(g /36 -1/2
max = (6)

III MASS CONSERVATION

As noted earlier, mass-conserving wind interpolation schemes obtain
an "initial guess" and then adjust that guess to remove the divergence.
An initial guess for the winds above the surface are more difficult to
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An initial guess for the winds above the surface are more difficult to
obtain. Sherman (1978) used the shape of any measured wind profile (when
available) to extrapolate upward throughout the region. When no

observed profile was available, Sherman assumed a linear variation of
wind with height. Endlich et al. (1982) assumed a uniform wind at the
top of the domain. They derived that wind from the surface pressure
field, using the geostrophic wind relationship (see e.g., Holmboe,
1948). More recent versions of the model (Endlich and Lee, 1983) use
both surface temperature and pressure observations with both the geo-
strophic and thermal wind relationships to provide upper level wind
estimates. The most recent version of this work is designed to use
Doppler acoustic sounder wind profiles with the geostrophic/thermal wind
estimate to obtain a spatially varying wind field at the top of the
domain (Nitz et al., 1985). Winds at intermediate levels are derived
from a log-linear interpolation between the surface wind estimate and

that for the top of the domain.

In addition to the differences in the way in which the initial wind
field estimate is obtained, there are also major differences in the
coordinate systems that are used. For example, Sherman (1978) uses
standard rectangular coordinates while Endlich et al. (1982) use a
curvilinear coordinate system that depends on the shape of the upper and
lower boundaries of the domain. Ludwig (1985) has reviewed the main
features of these two modeling approaches and discussed some of the
difficulties of incorporating energy conservation schemes into the
rectangular coordinate system. The following discussion is limited to
curvilinear coordinates.

Bhumralkar et al. (1980) used a curvilinear coordinate system to
simplify the treatment of the lower boundary in their mass-consistent
wind interpolation scheme. That work was modified by Endlich et al.
(1982) and later by Nitz et al. (1985). This latter version (Nitz et
al., 1985) forms the basis for the mass conservation aspects of the

model described here. In this model, the flow is assumed to take place
within specified surfaces. We will refer to these as "flow" surfaces.
They are similar in many respects to the "sigma" surfaces used by others
(e.g. Bhumralkar et al, 1980), but they differ in at least one important
respect. The flow surfaces can intersect the underlying terrain.
Wherever they intersect the terrain, the wind will be zero, and mass
conservation will require that there be flow around the obstacle. The
computational scheme allows for these internal boundaries.

Before proceeding to discuss how the topography of the flow sur-
faces is determined, we will review the methods by which non-divergence
is achieved and vertical velocity is calculated. Inasmuch as the sur-
faces are assumed to conform with the streamlines, vertical velocity (in
a rectangular system) is given by

w V Vz sfc (7)
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where I is the horizontal velocity and Vzsf c is the slope of the flow

surface. If the slope is not too great, then the velocity in the flow

surface can be used.

Nitz et al (1982) replaced the wind component variables with the

following

u* - uAz
(8)

V* = vAz

where Az is the average separation between the surface and the next

higher and next lower ones. At the bottom and top of the domain, Az is
half the distance to the adjacent surface. If the vertical motions

caused by the slope of the flow surfaces are small compared to the

horizontal motions, the continuity equation can be written

Du* av* (- + - = 0 (9)
ax ay

The iterative scheme for producing nondivergence has been described by

Endlich (19 84 ) and Nitz et al (1985).

IV DEFINING FLOW SURFACES

In essence, the objective is to define a coordinate system that is

more-or-less flow following. Once this is done, then there is no reason
why the coordinate surfaces may not intersect the terrain in areas where

there is flow around an obstacle. The winds are set to zero for any
grid points that lie below the local terrain height. As noted before,

this approach has been implemented in a recent version of the model
(Nitz et al., 1985). In order to make the method work properly, there

must be some way to determine where a given sigma surface intersects the
terrain. Nitz et al. (1985) provide only subjective guidance. The

critical streamline concept, as stated in Equation (6) seems to provide
a basis for an objective approach to the determination of sigma surface
shapes. That equation can be rewritten

ma x - z1 = 0 ( ZO  (10)

Z ~ o~{=const. O

where the subscript "o" refers to conditions at the lowest geometric
altitudes found on a particular flow surface. These conditions are then
used in Equation (10) to determine zmax, the highest altitude that that

particular flow surface will reach. In order to implement a system
based on this approach, the following steps are used:
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(1) The lowest and highest surface elevations within the model
domain are identified.

(2) The top of the domain (i.e. the top of the boundary layer)
over the lowest terrain elevation is defined and the vertical
extent of the domain at that point is divided into uniformly
separated layers.

(3) A value of V is estimated from the initially interpolated
wind field for each flow level; the estimate is derived from
an average of the interpolated winds at the appropriate levels
above each of the five lowest grid points. Other parameters
in Equation (10) are estimated from a temperature sounding,
although Doppler acoustic sounder observations of ow or clima-
tological information could probably be used.

(4) Equation (10) is solved for Zmax for each flow surface; these

define the heights of the flow surfaces at the x,y coordinates
of the highest topographical point.

(5) The value Zmax calculated for each flow surface is adjusted
(beginning at the second from topmost level) so that the lower
surfaces do not approach too close to the surfaces above them;
surfaces are currently, restricted from being closer than half
their separation above the lowest terrain elevations.

(6) A second, upward pass is made through the Zmax list to insure
that each upper surface is parallel to the lower surfaces, or
approaches closer to them over the high terrain; this prevents
the effects of the underlying terrain from penetrating upward
through stable layers.

(7) The heights of flow surfaces above the remaining grid points
are interpolated linearly according to the surface terrain
height.

(8) Mass-consistent wind field adjustments are made using a model
like that of Nitz et al. (1985).

The procedure outlined above assumes a positive (stable) vertical
potential temperature gradient throughout the depth of the modeling
domain. If this is not the case, then the flow surfaces will be terrain
following, i.e. Zmax is equal to the difference in elevation between
highest and lowest surface points. A standard interpolation scheme in
rectangular coordinates is applied to obtain a "first-guess" wind field
that is used for the flow surface definition procedure just described.
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FIGURE C-I. Terrain used for wind model test.
(Contour interval is 5 meters)

V TEST RUNS

The above procedure has been implemented and preliminary tests have
been completed. A 21 x 21 x 6 grid, extending from the surface to
about 200 m was superimposed on the terrain shown in Figure C-i. Two
cases were studied. In both cases, a steady south wind was used with
wind speeds of 1 m s -  near the surface and 2 m s -  at an altitude of
300 m above the plain on which the 92 m hill is located. This wind
profile was used with a neutral, adiabatic lapse rate and with a stable,
inversion rate of 3.6 x 10 2 C mI.
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Figure C-2 shows the shape of lowest flow surface for the two
tests. The upper part of the figure shows that the flow surface paral-
lels the topography throughout the region for the neutral case. The
stable stratification has a modest rise as the terrain is approached,
but the surface does not pass over it. This forces a flow around the
hill as can be seen in Figure C-3. For the neutral case, the vectors
are all parallel, indicating flow over the hill. Some slowing of the
wind arises over the elevations near 40 m because of the logarithmic
interpolation upward from the zero wind speed at the surface. The flow
around the hill is clearly evident in the stable case at this altitude.

Figure C-4 shows the results at the level 80 m above the terrain
surrounding the hill. Again, the neutral case shows wind directions to
be unaltered by the hill. The speed reductions are less pronounced than
at the lower altitude. The next highest flow surface (at 80 m above the
flat terrain) just barely clears the top of the hill for the stable case
and causes deviations in the flow so that it is nearly parallel to the
topographical contours in some places. There is even some flow through
the small col at the crest of the hill.

NEUTRAL

,, .'

.5

*%*

FIGURE C-2. Schematic representation of the terrain and lowest flow
surface for neutral and stable test cases.
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FIGURE C-3. Flow at 40 m above the surrounding terrain for neutral and
stable test cases.
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Figure C-5 shows two cross sections through the center of the hill
from south to north. The vertical scale is magnified by a factor of 3
relative to the horizontal, the same difference in scale is used for the
w (vertical) and v (northward) components of the plotted vectors. The
terrain following streamlines are clearly evident in the neutral test
results. However, the stable test shows streamlines rising only
slightly.

-NEUTRAL

STABLE 0 . -, - - .

SOUTH MORTR

FIGURE C-5. Flow in cross-sections through the center of the hill for
neutral and stable test cases.

The results obtained here required only about 15 seconds cpu time

on a VAX 11/782 computer. The storage requirements are mostly accounted

for by 7 floating point arrays that must be at least as large as the
grid used (21 x 21 x 6 in this case), and 4 two-dimensional arrays (21 x
21 for these tests). There are also numerous smaller arrays, but over-
all the computational requirements are limited enough that the technique

should be usable in real time on machines that are small enough for
routine field use.

The model discussed has not been fully tested. We hope to compare

model outputs with observations from regions of varying topographical
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complexity, and to use the results to refine the model. The model

already shows considerable promise for practical applications. The
early results are certainly qualitatively realistic. The data require-

ments are modest, and it is likely that a single Doppler acoustic
sounder could provide the information necessary to run the model,
although more inputs would improve the results.

The FORTRAN77 source code for this model follows the references.

Tables C-I through C-3 summarize the input data file requirements. They
also show the logical unit designations from which the various inputs

are read. Outputs (and the corresponding logical units for the output
files) are summarized in Tables C-4 and C-5. Grid sizes are defined in
data statements in the code.

Most of the input variable requirements are self-explanatory.

However, if the critical streamline feature is not invoked, the user
should be familiar with the parameters that are used to set the shape of
the flow surfaces.

The thickness of the boundary layer and the shape of the top
(whether curved or flat) are important factors in producing the charac-

teristics of the nondivergent flow. In many instances, radiosonde data

that describe the boundary layer top (BLT) are not available. In such

cases, average thickness over the grid (taken from experience or clima-
tological values) and a slope factor are used to specify the height of

the BLT at each grid point. The height of the BLT at a particular grid
point is denoted by H; the average thickness of the boundary layer in
the area of interest is denoted by H; h is the terrain height at the
grid point; ho is the terrain height at a reference point where H +
h.; and k is the slope factor. Then the basic equation is

H = H + khg + (I - k)hO

If k = 0, the boundary layer top is flat; if k = 1, the top parallels

the terrain. Values between zero and one give intermediate slopes, and
values greater than one give slopes steeper than the terrain slope.
Negative values give slopes opposite to the terrain slopes. Figure C-6

shows typical boundary layer tops for a nighttime case (R = 500 m, k =
0.2) and a daytime case (H = 1500 m, k = 0.8). The parameters H and k
can be treated as functions of time of day and season.

In the vicinity of coastlines the BLT usually has a general slope
from ocean to higher values over land in the daytime, with the reverse

situation at night. To account for this, two additional parameters are
used to specify a tilt to the BLT. One parameter specifies the west-to-

east difference in the thickness of the boundary layer across the grid,
and the other parameter specifies the south-to-north difference. There

is also a parameter for the minimum thickness of the boundary layer over
isolated mountain peaks. These five parameters are used in an iterative

solution for the height of the BLT (Endlich and Lee, 1983).

I
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FIGUJRE C-6. Typical configurations of the boundary-layer top for
daytime and nighttime.

Table C-1

" TOPOGRAPHIC ELEVATION INPUTS

(Logical Unit 11)

Form at V aria bles

8F10.2 ((HTCRS(I,JR), I-I,MCRS), JR=NCRS,I,-I)

8FI0.2 ((HTMED(I,JR), I-I,MMED), JR-NMED,I,-I)

8F10.2 ((HTFIN(I,JR), I=I,MFIN), JR--NFIN,I,-I)

HTCRS,HTMED,HTFIN--elevations of points in coarse,
medium and fine grids. HTMED read only if more
than one grid used. HTFIN read only if more than
two grids used.

MCRS,NCRS-~number of coarse grid points in x,y

directions (=21 x 21).

MMED,NMED--number of medi n grid points (21 x 21).

MFIN,NFIN--number of fine grid points (21 x 21).
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Table C-2

VARIABLES READ BY WIND MODEL FROM LOGICAL UNIT 12

Format Variables Subroutine

* AUTHK, SLFAC, STNK, DNI, BLGRX, BLGRY MAIN
* TERLIM, IDATE, IHOUR MAIN
* (LPRNT(K), K-I, NLVL MAIN
* NUMDOP DOPSIG
* (STAID(IT), STLT(IT), STUN(IT), IT=1,NUMDOP) DOPSIG
* (NHTS, continued
* (DPHT(IT,LL), DPWD(IT,LL), DPWS(IT,LL), LL=1,NHTS), DOPSIG

ISITE=1 ,NUMDOP)
* NUMNWS WXANAL
* (STAID(IT), STLT(IT), STLN(IT), PRESS(IT), TEMP(IT), GEOSIG

WD(IT), WS(IT), IT=1,NUMWS)
NTSOND WXANAL

AVTHK = average boundary layer thickness (m)
SLFAC = degree to which terrain is followed 0=flat, 1=follow
BLGRX, BLGRY = boundary layer gradient
TERLIM = intersection height with terrain

The above parameters used primarily when the stability option
is not used. AVTHK defines heights of surfaces over low terrain,
otherwise the values are overridden by stability method.

IDATE, IHOUR - date and hour for identification
LPRNT = levels to be printed have LPRNT=I
NUMDOP = number of Doppler sodars
STAID = Doppler station ID numbers (not used)
STLT, STLN = Doppler station latitude and longitude (decimal degree)
NHTS = number of elevations for Doppler input
DPHT, DPWD, DPWS = height (m), wind direction (deg), speed (ms - I )
NUMWS = number of sfc wx inputs
STAID = sfc station identification number (not used)
STLT, STLN = sfc station latitude and longitude
NTSOND = indicates if stability option used (=1) or not used (=0)

Note Units:

PRESS, TEMP = sfc station pressure ("Hg) and temperature (OF)
WD,WS = sfc station wind direction (decimal deg) and speed (m s - I )
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Table C-3

TEMPERATURE SOUNDING INPUTS
(LOGICAL UNIT 13)

Format Variables* Subroutine

*NHITES, ITYP STRAT

*(Z(I), T(I), PCI), I=1,NHIES) STRAT

NHITES -- number elevations for inputs

ITYP -- type of inputs (see below)

Z,T,P -- height Cm), temperature (00),
de/dz for ITYP=1

Z,T,P -- height (in), temperature (0C),
pressure (mb) for ITYP-0

Read only if NTSOND (Table C-2) is 1.
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Table C-4

WIND COMPONENT OUTPUTS
(LOGICAL UNIT 33)

Format Variables

1X,21I6 ((V(IJL), I-1, NCOL), J=NROW,1,1-1)

1X,2116 ((W(I,J,L), I-1, NCOL), J;NROW,I,-1)
IX,2116 ((V(I,J,L), I=1, NCOL), J=NROW,I,-I)

REPEATED FOR L=2,NLVL

U,V,W = wind components (cm s-1 )

NROW, NCOL, NLVL = number of rows, columns, and
levels

Winds are for flat surfaces, at heights determined
by flow surface heights above the lowest terrain.

Table C-5

FLOW SURFACE TOPOGRAPHY OUTPUTS
(LOGICAL UNIT 15)

Format Variables

(1X,25F5.0) (((RHS(IX,IY,L) + SFCHT(IX,IY), IX=1,21),
IY-21,1,-I), L=1, 6)

RHS = height of flow surface relative to underlying
terrain (m)

SFCHT = height of underlying terrain (m)
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PROGRAM WND
* C

C
C,*THIS FORM OF PROGRAM COMPLEX COMPUTES TOPOGRAPHICALLY INDUCED
Ct WINDS BY MAKING THE ORIGINALLY ANALYZED WINDS NONDIVERGENT.
C SIGMA SURFACES ARE DEFINED USING A CONCEPT ANALAGOUS TO
C THE CRITICAL STREAMLINE WHEN THE ATMOS IS STABLY STRATIFIED.
C THESE MODIFICATIONS ARE PRIMARILY CONTAINED IN SUBROUTINES
C XTREM,STRAT,R.SIG. SIGMA SURFACES CAN INTERSECT THE TERRAIN
C RESULTING IN ZERO WINDS IN THE "UNDERGROUND CELLS"
C THIS FORM ALSO REPLACES INWND WITH WXANAL WHICH READS IN WIND
C SOUNDINGS AND NWS DATA AND MAKES THE INITIAL WIND ANALYSIS.
C* THIS FORM USES DIRECT VECTOR ALTERATIONS IN SUBROUTINE BAL5.
C OTHER NEW FEATURES INTRODUCED IN '84-'85 ARE:
C WIND COMPONENTS AT SPECIFIED POINTS CAN BE HELD CONSTANT IN BAL5.
C BY R. ENDLICH, F. LUDWIG, K. NITZ, C. MAXWELL
C SRI INTERNATIONAL
C 333 RAVENSWOOD AVE MENLO PARK, CALIF 94025.
C PHONE (415) 859-3395 OR (415) 859-2915

INTEGER DNI
LOGICAL DBUG(15), KEY, UTMUSE
DIMENSION B(25,25),LPRNT(10),IB(25,25),ZFLAT(6)
COMMON/RARS/RHS(25,25,6)
COMMON/CSFC/SFCHT( 25,25) , SIGMA( 6)
COMMON/UARS/U(25,25,6),UA(25,25,6),V(25,25,6),VA(25,25,6)
COMMON/WARS/W(25,25,6),WA(25,25,6)
COMMON/PARMS/ZTOP, DS, DSIGMA, NLVLM1, XHT1, XHT2,Xl, YI,

1 X2,Y2,UG,VG,RATIO,TDSI
COMMON /CVOS/ RCM,RMF, IV,DSCRS, IXCRS,JYCRS, IXMED,JYMED,

+ IXFIN, JYFIN
COMMON/CTOP/ MCRS,NCRS,MMED,NMED, MFIN,NFIN,NGRID
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1, NROWM1,

$ LOWIX(5,3),LOWIY(5,3),SFCMAX
COMMON /BLHT/ BLT(25,25),HSITE, AVTHK, SLFAC,STHK,BLGRX,BLGRY
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON /ANCHOR/ SLAT, SLNG ,UTMUSE
COMMON /GROUND/ TERLIM
COMMON /PRLlM/. Ii, 12

C SET LIMIT ON NO. OF ITERATIONS IN SUBR. BAL5
DATA NIT/15/

C SET NUMBER OF VERTICAL LEVELS
DATA NLVL/6/

C SET SIGMA LEVELS (VERTICAL COORDINATES)
DATA SIGMA/0.0, 0.2, 0.4, 0.6, 0.8, 1.0/

C SET NO. OF GRIDS TO BE USED
DATA NGRID/I/

C SET NO. COLS,ROWS FOR COARSE,MED,FINE GRIDS
DATA MCRS/17/,NCRS/13/,MMED/21/,NMED/21/
DATA MFIN/21/,NFIN/21/

C SET GRID INTERVALS IN KM
DATA DSCRS/0.5/, DSMED/0.25/, DSFIN/0.1/

C SET RATIOS OF GRID INTERVALS, COARSE TO MED. , MED. TO FINE
DATA RCM/2.0/, RMF/2.5/

C SET HEIGHT (METERS) OF ANCHOR POINT (REFERENCE POINT)
DATA HSITE/838.0/

C SET LATITUDE, LONGITUDE OF ANCHOR POINT (UTMUSE=.FALSE), OR
C UTM COORDINATES OF ANCHOR PT (UTMUSE=.TRUE.)

DATA SLAT/4290.0/, SLNG/522.0/ ,UTMUSE/.TRUE./
C SET ANCHOR POINT LOCATION (IX,JY) IN EACH GRID

DATA IXCRS/ 1/,JYCRS/ 1/,lXMED/7/,JYMED/ 5/
DATA IXFIN/7/,JYFIN/5/

C SET LIMITS FOR PRINTING COLUMNS
DATA Ii/i/, 12/17/ ,KEY/.TRUE./

" DBUG CALLS PRINTS IN BAL5 DOPSIG GEOSIG GPAN RESIG
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DATA DBUG /.FALSE., .FALSE., .FALSE., .FALSE., .FALSE.,
4', C

C SETBLT SETMAT STRAT TOPO WXANAL
$ .FALSE., .FALSE., .FALSE., .FALSE., .FALSE.,

C
C XTREM MAIN PROG REINT LEVWND 1ST ESTIMATES

$ .FALSE., .TRUE., .FALSE., .FALSE., .TRUE./
C
Ca IN ALL ARRAYS POINT (1,1) IS AT SW CORNER. X INCREASES TO EAST, Y
C TO N. INDICES ARE I,J,K -(COL,ROW,LYR) WITH LIMITS NCOL,NROW,NLVL
C UNITS USED IN COMPUTATIONS ARE M, G, SECONDS

IF(DBUG(12)) PRINT 9013, MCRS,NCRS,MMED,NMED
IF(DBUG(12)) PRINT 9014, DSCRS, DSMED, DSFIN

C READ BOUNDARY LAYER VARIABLES (USED IN SETBLT)
C READ(12,9022) AVTHK, SLFAC, STHK, DNI, BLGRX, BLGRY

READ(12,*) AVTHK, SLFAC, STHK, DNI, BLGRX, BLGRY
IF(DBUG(12)) PRINT 9025, AVTHK, SLFAC, STHK, DNI, BLGRX, BLGRY

C UNITS ARE METERS
C READ TERRAIN INTERSECTION (USED IN TOPO), DATE, HOURC READ (12,9023) TERLIM, IDATE, IHOUR

READ (12,*) TERLIM(2 ) TE, IDATE, HHOUR
IF(DBUG(12)) PRINT 9026, TERLIM
IF(DBUG(12)) PRINT 9027, IDATE, IHOUR

C* READ PRINT INDICATORS. TO PRINT LEVEL K USE LPRNT(K)=1.
C READ(12,9030) (LPRNT(K),K=1,NLVL)

READ(12,*) (LPRNT(K),K=1,NLVL)
IF(DBUG(12)) PRINT 9035
IF(DBUG(12)) PRINT 9030, (LPRNT(K),K=1,NLVL)

C LOOP THRU NGRID SYSTEMS.
DO 1040 IGRID=1,NGRID

IF(DBUG(12)) THEN
IF (IGRID .EQ. 2) PRINT 9005
IF (IGRID .EQ. 3) PRINT 9006

END IF
C SET CONTROLS FOR PROPER GRID

IF (IGRID .NE. 1) GO TO 11
IXS=IXCRS
JYS=JYCRS
NCOL=MCRS
NROW=NCRS
DS=DSCRS

11 CONTINUE
IF (IGRID .NE. 2) GO TO 14
IXS=IXMED
JYS=JYMED
NCOL=MMED
NROW=NMED
DS=DSMED

14 CONTINUE
IF (IGRID .NE. 3) GO TO 15
IXS=IXFIN
JYS=JYFIN
NCOL=MFIN
NROW=NFIN
DS=DSFIN

15 CONTINUE
% C READ TERRAIN HEIGHTS FOR ALL GRIDS USING TOPO
%NUM1=0

IF (IGRID EQ. 1) CALL TOPO(NUM1,DBUG)
DS=DS'1. 0E3
NCOLM1 =NCOL- 1
NROWM1=NROW-1
NLVLM1=NLVL-1
TDSI=1./(2. 0*DS)

-: SET BL TOP AND SIGMA SURFACES
CALL TOPO(IGRID,DBUG)
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C PRINT + PLOT SURFACE HEIGHT
4 IF(DBUG(15)) PRINT 171

DO 53 JP=1,NROW
DO 53 IP=1,NCOL

B(IP,JP)= SFCHT(IP,JP)
IB(IP,JP)=JNINT(B(IP,JP))

53 CONTINUE
IF (DBUG(15)) THEN
DO 54 JP=l,NROW

* JR=NROW+ 1-JP
54 PRINT 9105, (IB(IP,JR),IP=I..12)

END IF
C '**'PLOT GEOMETRIC HEIGHTS OF SELECTED SIGMA SURFACES

DO 511 K=1,NLVL
IF (LPRNT(K) .NE. 1) GO TO 511
DO 627 JP=1,NROW
DO 627 IP=1,NCOL

-. B(IP,JP)= RHS(IP,JPK)
IB( IP,JP)=JNINT(B( IP,JP))

627 CONTINUE
IF(DBUG(15)) PRINT 571,K
DO 628 JP=1,NROW
JR=NROW+ I-JP

628 PRINT 9105, (IB(IP,JR),IP=1..12)
511 CONTINUE

4,Cs READ AND ANALYZE WIND DATA USING WXANAL
r' MAKE INITIAL WIND ANALYSIS ON MESH

CALL WXANAL(IGRID,DBUG)
C' * * * PLOT OBSERVED VELOCITY COMPONENTS AT SELECTED LEVELS''

DO 211 K=1,NLVL
IF (LPRNTCK) .NE. 1) GO TO 211
DO 46 J=1,NROW
DO 46 I=1,,NCOL

IB(I,J)=JNINT(U(I,J.K)'10.)
46 CONTINUE

IF(DBUG(15)) PRINT 271,K
DO 56 JP=1,NROW
JR=NROWt 1-JP

211 CONTINUE
DO 212 K=1,NLVL
IF (LPRNT(K) .NE. 1) GO TOJ 212
DO 48 J=1,NROW
DO 48 I=1,NCOL

IB(I,J)=JNINT(V(I,J,K)'10.)
4d CONTINUE

IF(DBUG(15)) PRINT 272,K
DO 58 JP=1,NROW
JR=NROW+ I-JP

58 IF(DBUG(15)) PRINT 9105, (IB(I,JR),I=I1,I2)
212 CONTINUE

IF (IGRID.GT.1) GO TO 226
* Cl COMPUTE VERTICAL MOTION W ALONG SIGMA SURFACES

DO 220 K=2,NLVL
DO 220 I=2,NCOLM1
DO 220 J=2,NROWM1
W(I,J,K)=0.o
IF (RIS(I,J,K).LE.0.0) GO To 220 FOR TERRAIN LIMIT
HSIGE=SFCHT(I*1,J)+RHS(Itl,J,K)

* HSIGN=SFCHT( IJ+1 )+RHS( I 4+1,K)
HSIGS=SFCHT( 14-1 )tRHS( 14-1, K)
DIIDX=(kSIGE-HSIGW) 'TDSI
DHDY= (HSIGN-HSIGS) 'TDSI

* W(I,J,K)=U(I,J,K)'DHiDX+V(I,J,K)*DHiDY
'zu CONTINUE
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22f, CONTINUE
IF (IGRID .EQ. 1) PRINT 9050
IF (IGRID .EQ. 2) PRINT 9055
IF (IGRID .EQ. 3) PRINT 9056
IF(DBUG(15)) PRINT 9020
IF(DBUG(15)) PRINT 3,(K, U(IXS,JYSK), V(IXS,JYSK),
$ W(IXS,JYS,K),RHS(IXS,JYS,K),K=1,NLVL)
DO 213 K=1,NLVL
IF (LPRNT(K) .NE. 1) GO TO 213
IF(DBLJG(15)) PRINT 273,K
DO 60 JP1I,NROW
DO 60 IP=1,NCOL
IB(IP,JP)=JNINT(W(IP,JP,Kj'100.)

60 CONTINUE
IF(DBUG(15)) THEN

DO 65 JP=1,NROW
JR=NROW+ 1-JP

65 PRINT 9105, (IB(IP,JR),IP=I..I2)
END IF

213 CONTINUE
C
C CALL SUBROUTINE TO M4AKE WINDS NONDIVERGENT
C

CALL BAL5(NIT,DBUG)
CALL LEVWND(DBUG,IGRID,ZFLAT)

C PLOT ADJUSTED VELOCITY COMPONENTS INTERPOLATED TO SELECTED LEVELS

DO 611 K=1,NLVL
IF (LPRNT(K) .NE. 1) GO TO 611
DO 615 J=1,NROW
DO 615 I=1,NCOL

IB(I,J)=JNINT(UA(I,J,K)*10.)
615 CONTINUE

IF(DBUG( 12) )THEN
PRINT 671,K
DO 622 JP=1,NROW

JR=NROW+ 1-JP
£22 PRINT 9105, (IB(I,JR),I=I1,I2)

END IF
ti11 CONTINUE

DO 612 X=1,NLVL
IF (LPRNT(K) .NE. 1) GO TO 612
DO 616 J=1,NROW
DO 616 I=1,NCOL

IB(I,J)=JNINT(VA(I,J,K)*10.)
£16 CONTINUE

IF(DBUG(12) )THEN
PRINT 672,K
DO 624 JP=1,NROW
JR=NROW* 1-JP

t24 PRINT 9105, (IB(IJR),I=11,I2)
END IF

£12 CONTINUE
DO 641 K=1,NLVL
IF (LPRNT(K) NE. 1) GO TOD 641
DO 645 J=1,NROW
DO 645 I=1,NCOL

IB( I,J)=JNINT(WA(I,JK)'10.)
645 CONTINUE

IF(DBUG(12))THEN
PRINT 675,K

p DO 652 JP=1,NROW
JR=NROWt 1-JP

i,112PRINT 9105, (IB(I,JR),I=I1,12)
END IF
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b41 CONTINUE
IF (IGRID EQ. 1) PRINT 9050
IF (IGRID .EQ. 2) PRINT 9055
IF (IGRID .EQ. 3) PRINT 9056
IF(DBUG(12)) PRINT 2
IF(DBUG(12)) PRINT 10,(K,UA(IXS,JYS,K),VA(IXS,JYSK),

$ RHS(IXS,JYS,K),K=1,NLVL)

C--WRITE WNDS INTERPOLATED TO FLAT SFCS (OR 10M ABOVE TERRAIN FOR 1ST LVL) ----
C

DO 700 K=l, NLVL
DO 690 J=l, NROW
JR=NROW 1-J

690 WRITE (3,9065) (NINT(100.*UA(I,JR,K)),I=1,NCOL)
DO 695 J=1, NROW
JR=NROW+1-J

695 WRITE (3,9065) (NINT(100.0*VA(I,JR,K)),I=1,NCOL)
DO 697 J=1, NROW

JR=NROW+1-J
o97 WRITE (3,9065) (NINT(100.0*WA(I,JR,K)),I=1,NCOL)
700 CONTINUE

r ---------- WRITE WINDS ON SIGMA SFCS-------------------------

SC DO 750 K=2, NLVL
* DO 990 J=l, NROW

JR=NROW+1-J
C990 WRITE (3,9065) (NINT(100.*U(I,JR,K)),I=I,NCOL)
C" DO 995 J=l, NROW
C JR=NROW+I-J
C995 WRITE (3,9065) (NINT(100.0*V(I,JR,K)),I=1,NCOL)
C DO 997 J=l, NROW
c JR=NROW* l-J
C997 WRITE (3,9065) (NINT(100.0*W(I,JR,K)),I=1,NCOL)
C750 CONTINUE
C-----------------------------------------------------------------------------
1040 CONTINUE

2 FORMAT (/' FINAL RESULTS AT ANCHOR PT'/2X,'K UA VA W
+ REL. HT4.'/)

3 FORMAT(IX, I2, 2X,2FI0.2,FlI.3,FI0.1)
10 FORMAT (IX,I2,2X,2FI0.2,Fl0.i)

171 FORMAT (iHI,' TERRAIN HEIGHT, METERS, NORTH ROW FIRST/)
271 FORMAT(IH!,' U COMPONENT DECIMETERS/SEC, LVL = '14/)
272 FORMAT(1Hl,' V COMPONENT DECIMETERS/SEC, LVL = '14/)
273 FORMAT(IH1,' W, CM/SEC , LVL ='13/)
571 FORMAT (IHI,' HEIGHT ABOVE TERRAIN, M, LVL='13/)
671 FORMAT (IHI,' ADJUSTED U COMPONENT, ',

$ 'DECIMETERS/SEC, LVL='13/)
672 FORMAT (1H1,' ADJUSTED V COMPONENT,',

$ ' DECIMETERS/SEC, LVL='13/)
65 FORMAT (IHI ,' ADJUSTED W COMPONENT,',

$ ' DECIMETERS/SEC, LVL='13/)
9005 FORMAT (IHI,' "BEGIN COMPUTATIONS FOR MEDIUM GRID*'/)
9006 FORMAT (IHI,' "BEGIN COMPUTATIONS FOR FINE GRID**'/)
9013 FORMAT (/' COARSE GRID E-W'15,' S-N'15,' MEDIUM GRID E-W'14,' S-N

t '14/)
9U14 FORMAT (/' GRID INCREMENTS IN KM, COARSE='F4.1,' MED.='F4.1, '

+ FINE='F4.1/)
9020 FORMAT (/' ORIGINAL U, V, W, REL. HTS AT ANCHOR PT. '/)
ju22 FORMAT (F10.1,F10.2,F10.1, 15,2F7.1)
j023 FORMAT (F10.1,218)
*-ij25 FORMAT (//' AVER. BNDY. THICKNESS IN M ='F8.1,

+ 'SLOPE FACTOR FOR BL TOP 'F4.1,' MIN. THICKNESS='F7.1,
S/' DAYI NITE2 INDICATOR='I3,' B LYR GRADIENT TO EAST, M='F7.1

' TO NORTH =' F7.1/)
* o26 FORMAT (/ TERRAIN INTERSECTION WILL OCCUR FOR HTS
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2 ABOVE'F6.1,' METERS'/)
9027 FORMAT (/' DATE ='I8,' HOUR ='14/)
9030 FORMAT (1215)
9035 FORMAT (/' INDICATORS, LPRNT(K),FOR PRINTING FIELDS'/)
9046 FORMAT (lHI,' V COMP. AT LEVEL 3 '/)
9050 FORMAT (IHi,' COARSE GRID')
9055 FORMAT (iHI, ' MEDIUM GRID')
9056 FORMAT (IHI,' FINE GRID')

9060 FORMAT (15,EIO.I,I5)
9065 FORMAT (iX,2116)
9100 FORMAT (/5X,22F5.0)
9105 FORMAT (/IX, 2515)

STOP
END

C

SUBROUTINE BAL5(NITER,DBUG)
Ca****THIS IS VERSION 11, OCTOBER '84.
C THIS ROUTINE BALANCES DIVERGENCE TO VALUES IN ARRAY DD (OR
C TO DDIJ=O) AND VORTICITY TO ARRAY VT(I,J).
C FOR WIND SPEED IN MPS. DIV AND VORT ARE SCALED TO UNITS
C 10 -6 SEC-I. THE METHOD USES DIRECT VECTOR ALTERATIONS.
C THIS FORM FOR RECTANG GRID OMITS TRIG FUNCTIONS.
C THE FLUX FORMULATION IS USED FOR FINITE DIFFERENCES. FOR SIGMA LAYERS
C COMPUTE NON-DIV WINDS FOR WINDS WEIGHTED BY THICKNESS OF LAYER.

* C ASSUME SIGMADOT=O. INDICES IN ARRAYS (I,J,K) ARE I=COLUMN,
C J=ROW, K=LEVEL; PT (1,1,1) IS AT SW CORNER AT GROUND.
C FOR COMPUTATION BOXES, INDICES REFER TO SW CORNER OF BOX.
C IVORT CONTROLS USE OF VORTICITY. IFt2 VORT IS NOT HELD
C CONSTANT.
C BY R.M. ENDLICH, SRI INTN'L, 1ST VERSION FOR LAYERS JUNE '82.
C

LOGICAL DBUG(15),RYT3
DIMENSION VT(25,25),DI(25,25),VO(25,25),UI(25,25),V1(25,25)
DIMENSION UN(25,25),VN(25,25),THK(25,25),NEWLVL(5)
DIMENSION IFXPT(25,25)
COMMON /UARS/U(25,25,6),UA(25,25,6),V(25,25,6),VA(25,25,6)
COMMON/PARMS/ZTOP,DS, DSIGMA, NLVLM1,XHT1, XHT2, Xl, YI,

3(2,Y2,UG,VG,RATIO,TDSI
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1,NROWM1,

LOWIX(5,3),WoWIY(5,3),SFCMAX
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON /RARS/RHS(25,25,6)
COMMON /PRLIM/ 11,I2
DATA NEWLVL/2,6,3,4,5/
DATA RYT3/.FALSE./
IVORT=2 ! IGNORE VORTICITY
IF(DBUG(1)) PRINT 9002
GS=DS*I. OE-05

C USE GRID SPACING IN 100'S OF KM. DS IS IN M.
GSI=10.0/GS ! FOR PROPER SCALING

C FOR RECTANGULAR GRID OMIT TRIG FUNCTIONS USED PREVIOUSLY
C ASSIGN PTS WHERE INITIAL WIND ANALYSIS IS HELD FIXED

IF (IGRID .NE. 1) GO TO 10 ! FOR COARSE GRID
CALL SETMAT(0, IFXPT, NCOL, NROW)

C
C----------- IDENTIFY PTS NOT TO BE CHANGED----------------------
C IFXPT(11,8)=i

10 CONTINUE
IF (IGRID .NE. 2) GO TO 15 ! FOR MEDIUM GRID
CALL SETMAT(0, IFXPT, NCOL, NROW)

C IFXPT( , )= 1
15 CONTINUE

C PRINT POINTS WITH FIXLID WINb6
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C DO 25 J=I,NROW
C DO 25 I=1,NCOL
C IF (IFXPT(IJ) .EQ. 1) PRINT 9582, I,J
C 25 CONTINUE
C ----------------------------------------------------------------------
C ARRAYS U,V,RHS ARE WRITTEN (COLS,ROWS,LEVELS)
C TRANSFER WINDS TO 2D ARRAYS IN ORDER BOTTOM(LEV2), TOP,3,4,5
c
C DO 800 NORDR=1,NLVL-1
C
C INTERPOLATING IN VERTICAL TO GET 1ST GUESS FIELDS FOR LEVELS 3,4,5
C
C L=NEWLVL(NORDR)
C IF (NORDR:GE.3) CALL REINT(DBUG,L)
C --------------------------------------------------------------------------
C NOT REINTERPOLATING FROM PREVIOUSLY BALANCED LEVELS
C

DO 800 L=2,NLVL
C-----.......................-................................................

DO 35 J=1,NROW
DO 35 I=1,NCOL

UN(I,J)=U(I,J,L)
VN( IJ)=V(I,J,L)

35 CONTINUE
CALL SETMAT(0.0,DI ,NCOL,NROW)
CALL SETMAT(0.0,VT ,NCOL,NROW)
CALL SETMAT(0.0,VO ,NCOL,NROW)

C COMPUTE LAYER THICKNESS AND MULTIPLY WIND COMPONENTS
DO 40 J-1,NROW
DO 40 I=I,NCOL

LA=L *1
IF (LA.GT.NLVL) LA=NLVL
HTA=RHS( I,J, LA)
LB=L-1
IF (LB.LT.1) LB=l
HTB=RHS( I,J,LB)
IF (HTB.LT.-l.0) HTB=-1.0
THK( I,J)=0.5*(HTA-HTB)*0.01

IF (THK(I,J).LE.0.) THK(I,J)=1.0 ! FOR NEG. RHS

C UNITS OF THICKNESS ARE HUNDREDS OF M FOR CONVENIENCE
C SET INITIAL WINDS BEFORE ALTERATIONS

UI(I,J)=UN(I,J)
VI(I,J)=VN(I,J)

. WEIGHT WINDS WITH THICKNESS OF LAYER
UN( I,J)=UI(I,J)*THK(I,J)
VN(I,J)=Vl( I,J) *THK(I,J)

40 CONTINUE
c IF(DBUG(1)) PRINT 9520
C DO 45 J=1,NROW

JP=NROW+1 -J
C 45 IF(DBUG(1)) PRINT 9102, (THK(I,JP),I=II,12)
C COMPUTE ORIGINAL DIVERGENCE AND VORTICITY

DO 170 J=1,NROWM1
DO 170 I=1,NCOLM1
UE=0.5' (UN( I+I,J)+UN( I+1,J+))
UW=0.5*(UN(I,J) +UN(I,J+)1)
VSO=0.5*(VN( I+1,J) VN(1,J))
VNO=0.5'(VN(I,J+1)+VN(I+1,J+))
DUE=GSI* ( UE-UW )
DVN=GSI* (VNO-VSO)
DI(I,J)=DUE+DVN ! DIV, UNITS ARE 10-6 SEC-i
IF (IVORT .EQ. 2) GO TO 170
VE=0.5* (VN( I+I,J)+VN(I4l,J+l) )
VW=0.5'(VN(I,J) +VN(I,J+1))
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USO=0.5*(UN(I+1..J)*UN(I,J))
UNO=0.5*(UN(I,J+1)+UN(I+1,J+1))
DVE=GSI' (VE-VW)
DUN=GSI' (UNO-USO)
VT(I,J)=DVE-DJN 'VORTICITY

170 CONTINUE
C IF(DBLJG(1)) PRINT 9570
C DO 173 J=1,NROW

JP=NROW* 1-3
C 173 IF(DBUG(1)) PRINT 9100o (VT(I,JP),I=I1,I2)
c IF(DBUG(1)) PRINT 9571
c DO 172 J=1,NROW

JP=NROW+1-J
C 172 IF(DBUG(l)) PRINT 9100, (DI(I,JP),I=Il,12)
C FOR NONDIVERGENCE SET DDIJ=0.0

DDIJ=0. 0
LG=0

RA=O.4 'RELAXATION FACTOR
210 LG=L4G+l

DO 500 J=1,NROWM1
DO 500 11, NCOLMI

UW=J0. 52(UN(I,J) +LJN(I,J+1))
VSO=0.5*(VN(I+1,J)+VN(I,J))
VNO=0.5*(VN(I,J+1)tVN(I+1,J*1))
DUE=GSI' (UE-UW)
DVN=GSI' (VNO-VSO)
DI I ,J)=DUE+DVN
CUIJ=.05*GS *(DDIJ-DI(I,J))*RA
CVIJ=.05*GS-(DDIJ-DI(I,J) )'PJ
IF (CUIJ .LT.-l.0) CUIJ=-1.0 LIMIT CHANGES
IF (CUIJ.GT. 1.0) CLJIJ=1.0
IF (CVIJ .LT.-l.0) CVIJ=-1.0
IF (CVIJ.GT. 1.0) CVIJ=1.0
LN(I+1,J)=UN(I+1,J)+CUIJ
UNC I+1,J+1)=UNC I+1,J+1) +CLJIJ
UN(I,J)=UN(I,J) -CUIJ
UN( I,J-*1 )=LN( 1,J+1) -CUIJ
VN(I+1,J)=VN(ILt1,J)-CVIJ
VN( I,J)=VN( I,J)-CVIJ
VN( I,J+1)=VN( I,J+1)+CVIJ
VN( I+1,J+1)=VN( I+1,J+1)+CVIJ
IF (IVORT .EQ. 2) GO TO 490
VE=0.5*(VN(I+1,J)+VN(I+1,Jt1))
VW=0.5'(VN(I,J)+VN(I,J+1))
USO=0.5*(UN(I+1,J)+UN(I,J))

UNOO0.5*(UN(I,J+1)+UN(I*1,J+1))
DVE=GSI' (VE-VW)
DUN=GSI *(UNO-USO)
VO( I,J)=DVE-DJN
CVIJ=.05*GS *(VT(I,J)-VO(I,J))*R*
CUIJ=.05'GS*(VT(I,J)-VO(I,J))*RA
IF (CUIJ .LT.-I.0) CUIJ=-1.0 LIMIT CHANGES
IF (CUIJ.GT. 1.0) CUI131.0
IF (CVIJ .LT.-1.0) CVIJ=-1.0
IF (CVIJ.GT. 1.0) CVIJ=1.0

UN(I,J)=UN(I,J) +CUIJ
UN( 1+1, )=UN( hi 3) +CUIJ
UN(I,J+1)=UN1(I,J+1)-CUIJ
UN(I+1,J+1)=UN( I+1,J+1)-CUIJ
VN( I+1,J)=VNC I*1,J)+CVIJ
VN(I+1,J-t1)=VN( 1*1,3+1) iCVIJ
VN( 1, )=VN( I,J )-CVIJ
VN( 1,J+1 )VN( I,J+1 )-CVIJ

490 CONTINUE
C TO0 KEEP WINDS 0.0 WHERE RHS IS NEGATIVE
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IF (RHS(I,J,L).LE.O.O) THEN
UN(I,J)=0.0
VN(I,J)=0.0
END IF

* C HOLD ANALYZED WIND COMPONENTS FIXED AT PTS WHERE IFXPT=1
a.IF (IFXPT(I,J) .N&. 1) Go To 500

UN(I,J)=U1(I,J)*THK( I,J)
VN( I,J)=V1( I,J)*THK( I,J)

500 CONTINUE
IF (LG.GT.NITER) GO To 540

DO 530 J=2,NROWM1
DO 530 I=2,NCOL4J

IF (ABS(DDIJ-DI(I,J)).GT.50.0) GO To 210
C IF (ABS(VT(I,J)-VO(I,J)).GT.50.0) GO TO 210
530 CONTINUE
540 CONTINUE

C IF(DBUC(l)) PRINT 9570
a. IF(DBUG(l)) PRINT 9580

c' DO 510 J=1,NROW
JP=NROW+ 1-J

C 510 IF(DBUG(l)) PRINT 9100, (VO(I,JP),I=I,12)
C IF(DBUG(1)) PRINT 9200, LG
C IF(DBUG(1)) PRINT 9571
C IF(DBUG(1)) PRINT 9580
c DO 520 J=1,NROW

JP=NROW-1-J
C 520 IF(DBUG(1)) PRINT 9100, (DI(I,JP),I=Il,I2)

SUM.1=0.0
SUM.2= 0.0
Q1=0 0
DO 1040 J=1,NROW
DO 1040 1=1,NCOL
IF (RHS(I,J,L).LE.0.0) GO TO 1040 !OMIT THESE PTS
Q1=Q141. 0
UN( I,J)=UN( I,J)/THK( I,J)
VN( I,J)-VN( I,J)/THK(I,J)

Vl(I,J)=Vl( I,J)-VN( I,J)
SUM1=SUM1+U CI, ,J)
SUM2=SUM2+V ( I, J)

1040 CONTINUE
SUM1=SUM1/Q1
SUM2=SUM2/Q1

C NORMALIZE ORIG. AVERAGE VALUES
C DO 1045 J=1,NROW
C DO 1045 I=1,NCOL
c UN(I,J)=UN(I,J)tSUM1
C VN(I,J)=VN(I,J) +SUM2

IF(DBUG(1)) PRINT 1145, L
DO 1160 J=1,NROW
JP=NROW+1-J

1160 IF(DBUG(1)) PRINT 9150, (U1(I,JP),I=11,12)
IF(DBUG(1)) PRINT 1155
DO 1*170 J=1,NROW
JP=NROW-1-J

1170 IF(DBUG(1)) PRINT 9150, (V1(I,JP),I=I1..12)
C WRITE LEVEL 4 DIV WINDS TO OUTPUT FILE

IF (L .NE. 4) Go TO 700
IF(.NOT.RYT3) GO To 700
DO 690 J=1, NROW

JR=NROWs 1-J
690 WRITE (3,9065) (Ul(I,JR),I=1,NCOL)

DO 695 J~1, NROW
JR=NROW+ 1-J

695 WRITE (3,9065) (V1(I,JR),I=1,NCOL)
700 CONTINUE
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cI
C CHANGE BACK TO 3D ARRAYS
C

DO 580 J=I,NROW
DO 580 I=I,NCOL

U(I,J,L)=LJN(I,J)

V(I,J,L)=VN(I,J)

580 CONTINUE
800 CONTINUE

IF(DBUG(1)) PRINT 9003
1145 FORMAT(' U COMP. DIVERGENT, LEVEL ='13)
1155 FORMAT(' V COMP. DIVERGENT ')
9002 FORMAT (//' BEGIN SUBROUTINE BAL5 '/)
:'u03 FORMAT (//' END OF SUBROUTINE BAL5 '/)
9065 FORMAT (10F8.1)
9150 FORMAT(' ',33F4.1)
9582 FORMAT (/' POINT WITH FIXED WIND IS COL ='13,'ROW ='13/)

RETURN
END

c

SUBROUTINE DOPSIG(DBUG,KEY)
C ASSIGN DOPPLER WIND PROFILES TO SIGMA SURFACES.
C MISSING WINDS ARE DENOTED BY -999.
C IF SOUNDING IS NOT COMPLETE THE LAST REPORTED WIND
C IS USED AT THE HIGHEST ALTITUDES.
C WIND DATA START AT 40 M AND CONTINUE AT 30-M INTERVALS
C TO 610 M. THERE ARE 20 POINTS IN A PROFILE.
C FILL IN MISSING DATA WITH NEAREST POINT UP OR DOWN.
C FOR PROGRAM DIABWND, JAN '85.
C BY R.M. ENDLICH, SRI INTN'L, MENLO PARK CA 94025.
C MODIFIED BY FLLUDWIG--12/85

LOGICAL KEY,DBUG(15),UTMUSE
DIMENSION DPHT(5,50), DPUC(5,50), DPVC(5,50),RHS1(5,6)
DIMENSION DPWD(5,50),DPWS(5,50),XSt5),YS(5),STLT(5),STLN(5)
COMMON /STALOC/ XG(50), YG(50)
COMMON /WINDS/ USIG(50,6), VSIG(50,6)

,.-. : COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1, NROWM1,
$ LOWIX(5,3),LOWIY(5,3),SFCMAX
COMMON/RARS/RHS(25,25,6)
COMMON/PARMS/ZTOP,DS,DSIGMA,NLVLMI1,XHT1,XHT2,XI,YI,

1 X2,Y2,UG,VG,RATIO,TDSI
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON /ANCHOR/ SLAT, SLNG ,UTMUSE
COMMON /NUMOBS/ NUMDOP, NUMNWS, NUMTOT
COMMON /UPWIND/ UTOP, VTOP
INTEGER STAID(5)

C VARIABLES ARE:
' DPUC=U COMPONE4T OF 'lPLIR< WiD .±h L1.
C DPVC=V COMPONENT OF DOPPLER WIND IN MPS
C NHTS=NUMBER OF POINTS IN VERTICAL WIND PROFILE
C NLVL=NUMBER OF SIGMA LEVELS
C RHS=HT OF SIGMA SURFACES ABOVE TERRAIN (M)
C XG,YG=STA. DIST IN X,Y IN GRID UNITS FROM SW CORNER

IF(DBUG(2)) PRINT 9001
C FILL IN HEIGHTS OF DOPPLER DATA POINTS
C- -------------------------------
C PRINT LAT,LONG OF ANCHOR POINT (UTMUSE=F) OR UTM COORDS (UTMUSE=T)

IF(DBUG(2)) PRINT 9007, SLAT, SLNG
C' READ LAT , LONG OF STATIONS (DEG) AND CONVERT TO XS,YS (KM)--UTMUSE=F--
C OR READ IN UTM COORDINATES (KM) DIRECTLY--UTMUSE=TRUE--FROM SW CORNER

IF (KEY) THEN
READ(12,9014) NUMDOP
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READ(12,*) NU)4DOP
IF(DBUG(2)) PRINT 9027, NUMDOP
READ(12,') (STAID(IT),STLT(IT), STLN(IT),IT=1,1NUMDOP)
IF(DBUG(2)) PRINT 9004
IF(DBUG(2)) PRINT 9014,

$ (STAID(IT),STLT(IT), STLN(IT),IT=1,NUMDOP)
DO 15 IT=1,NUMDOP

IF (UTMUSE) THEN
XS( IT)=STLN( IT)-SLNG
YS( IT)=STLT( IT)-SLAT

ELSE
XS(IT)=(STLN(IT)-SLNG)'(111.2*COS(SLAT/57.295))
YS( IT)=(STLT( IT)-SLAT)*111 .2

END IF
XS(IT)=XS( IT)+IXS*(DS' .001)
YS( IT)=YS( IT)+JYS*(DS' .001)
XG( IT)=XS( IT)/(DS* .001)
YG( IT)=YS( IT)/(DS' .001)

15 CONTINUE
IF(DBUG(2)) PRINT 9008
IF(DBUG(2)) PRINT 9011,

$ ~(XS(IT), YS(IT),XG(IT) ,YG(IT) ,IT=1,NUfl'DOP)
END IF

C ASSIGN HTS OF SIGMA SFC FOR EACH SOUNDING
DO 25 IT=1,NUMDOP

DO 20 K=1,NLVL
IX=JNINT(XG( IT))
JY=JNINT(YG( IT))
IF (IX.LT.1) IX'~1
IF (IX.GT.NCOL) IX=NCOL
IF (JY.LT.1) JY~1

4 IF (JY.GT.NROW) JY=NROW
-' RHS1( IT,K)=RHS( IX,JY, K)

20 CONTINUE
IF(DBUG(2)) PRINT 9024
IF(DBUG(2)) PRINT 9015, IT, (RKS1(IT,K),K=1,NLVL)

25 CONTINUE
SC READ DOPPLER SOUNDINGS FOR NUMDOP STATIONS

DO 450 IT=1,NI4MDOP
IF (KEY) THEN

c READ (12,9014) NHTS
READ (12,*) NHTS
IF(DBUGC2)) PRINT 9003, IT, NHTS

c READ (12,9009) (DPHT(IT,LL),DPWD(IT,LL), DPWS(IT,LL),
$ LL=1,NHTS)

READ (12,*) (DPH-T(IT,LL),DPWD(IT,LL), DPWS(IT,Ll,),
S LL-'1, 14 f'..,
IF(DBUG(2)) PRINT 9009,

$ (DPHT(IT,LL),DPWD(IT,LL), DPWS(IT,LL),LL=I1,NHTS)
CHANGE DIRECTION AND SPEED (MPS) To U AND V

DO 40 LL=1,NHTS
IF (DPWD(IT,LL) .EQ.-999.0) THEN

DPUC( IT,LL)=-999. 0
DPVC( IT, LL)=-999.0

ELSE
DPUC( IT, LL)=-DPWS( IT, LL) *SIN(DPWD( IT, LL)/57 .295)
DPVC( IT, LL)=-DPWS( IT, LL) 'COS(DPWD( IT, LL)/57.295)

END IF
40 CONTINUE

IF(DBUG(2)) PRINT 9010,(DPUC(IT,LL),
$ DPVC( IT, LL) ,LL=1 ,NHTS)

CFILL IN MISSING DATA IF NEEDED
* 2 START FROM BOTTOM AND GO UPWARD

LL= 0
610 LL=LL *1

IF (LL .EQ. NHTS) GO TO 100

57

WIN.........................................



7- 371 %

- IF (DPUC(IT,LL) .EQ.-999.0) THEN
GO TO 70

GLS TO 60

END IF
70 LL1=LL

75 LL1=LL1+1
IF (DPIJC(IT,LLl) .EQ.-999.0 .AND. LLl .EQ. NHTS)

+ ~ GO TO100
IF (DPUC(IT,LL1) .EQ.-999.0) THEN
GO TO 75

ELSE
DPUC( IT,LL)=DPUC(IT,LLI)
DPVC( IT,LL)=DPVC( IT,LL1)
IF(DBUG(2)) PRINT 9015, LL, DPUC(IT,LL), DPVC(IT,LL)
GO TO 60

END IF
100 CONTINUE

IF(DBUG(2)) PRINT 9010, (DPUC(IT,LL),DPVC(IT,LL),LL=1,NHTS)
C START FROM TOP AND GO DOWN

LL=NHTS+ 1
110 LL=LL-1

IF (LL .EQ. 1) GO TO 140
IF (DPUC(IT,LL) .EQ.-999.0) THEN

GO TO 120
ELSE
GO TO 110

END IF
120 LL1=LL
125 LL1=LLI-1

IF (DPUC(IT,LL1) .EQ.-999.0) THEN
GO TO 125

ELSE
DPUC( IT,LL)=DPUC( IT,LL1)
DPVC( IT,LL)=DPVC( IT,LL1)
IF(DBUG(2)) PRINT 9015, LL, DPUC(IT,LL), DPVC(IT,LL)
GO TO 110

END IF
140 CONTINUE

IF(DBUG(2)) PRINT 9012
IF(DBUG(2)) PRINT 9010,(DPUC(ITLL),DPVC(IT,LL),LL=1,NHTS)

END IF
BEGIN INTERPOLATION SCHEME

DO 400 K=2, NLVL ! COUNTER FOR SIGMA LEVELS
LL= 0

200 LL=LL+1
IF (RHS1(IT,K).GT.0.0) GO TO 365

d USIG( IT, K)0 .0
VSIG( IT, K)0O.0
GO TO 400

-165 IF (RHS1(IT,K).LE.DPHT(IT,LL)) GO TO 320
IF (RHSI(IT,K).GE.DPHT(IT,NHTS)) GO TO 380
IF (RHSIS(IT,K).GE.DPHT(IT,LL) .AND. RHS1(IT,K).LE.

+ DPHT(IT,LL+t1)) GO TO 360
GO TO 200

CFOR LEVELS BELOW 1ST MEASURED WINDS (ASSUME SPEED=O AT IM
C AND AT GROUND WHERE RHS=0)

320 USIG(IT,K)=(DPUC(IT,LL))*(ALO)GIO(RHS1(IT,K)))/
+t ALOG1O(DPHT(IT,LL))

VSIG( IT, K)= (DPVC( IT, LL) )'(ALOG10(RHSI( IT, K)))
+ ALOG1O(DPHT(IT,LL))

GO TO 400
C FOR SIGMA LEVELS BETWEEN DOPPLER WIND POINTS

360 RATIO=(ALO1O(RHS1(IT,K))-ALOGIO(DPHT(IT,LL)))/
(ALOG1O(DPHT(IT,LL+1))- ALOG1O(DPHT(IT,LL)))
USIG(IT,K)=DPUC(IT,LL) *(DPUC(IT,LL-t1)-DPUC(IT,LL))
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4 *RATIO
VSIG(IT,K)=DPVC(IT,LL) +(DPVC(IT,LL 1)-DPVC(IT,LL))
*RATIO

GO TO 400
C FOR SIGMA LEVELS ABOVE LAST DOPPLER POINT

380 USIG(ITK)=DPUC(IT,NHTS)
VSIG(IT,K)=DPVC(IT,NHTS)

400 CONTINUE
IF(DBUG(2)) PRINT 9020, IT
IF(DBUG(2)) PRINT 9010, (USIG(IT,K), VSIG(IT,K), K=I,NLVL)

450 CONTINUE
C GET AVER UPPER WIND FOR POSSIBLE USE IN GEOSIG IF GEOS WIND
C IS NOT AVAILABLE

UTOP=0
VTOP=O

DO 460 IT=l, NUMDOP
UTOP=UTOP+USIG(IT,NLVL)
VTOP=VTOP+VSIG( IT,NLVL)

460 CONTINUE
UTOP=UTOP/( FLOAT ( NUMDOP))
VTOP=VTOP/( FLOAT(NUMDOP))

IF(DBUG(2)) PRINT 9026, UTOP, VTOP
IF(DBUG(2)) PRINT 9002

9001 FORMAT (/' BEGIN SUBROUTINE DOPSIG '/)
9u02 FORMAT (' END OF SUBROUTINE DOPSIG '/)
j003 FORMAT (/' STA. ='13,' NO. OF POINTS IN PROFILE='I3/)
9004 FORMAT (//' LATITUDE AND LONGITUDE OF STATIONS'/)
9007 FORMAT (//' THE ANCHOR PT. IS AT LAT ='F9.3,' AND LONG='F9.3)
9008 FORMAT (//' X AND Y OF STATIONS IN KM AND IN COLS,ROWS FROM SW

+ CORNER OF COARSE GRID'/)
9009 FORMAT (3X,3F7.1)
9010 FORMAT (3X,8F6.1)
9011 FORMAT (/4X,2F1I.3,8X,2Fl0.2)
.012 FORMAT (/' SOUNDING WITH FILLED IN DATA '/)
9014 FORMAT (3X,I5,2F8.2)
9015 FORMAT (3X,I5,6F8.2)
9020 FORMAT (/' STATION NUMBER ='16/)
9024 FORMAT (/' HEIGHTS OF SIGMA SURFACES '/)
c026 FORMAT (/' AVFR. UPPER WIND. I ='F6 I.' V='F6.1/)
,;027 FORMAT (/' NUMBER OF WIND SOUNDINGS ='1J/)

RETURN
END

SUBROUTINE GEOSIG(DBUG)
C
C PREPARE NWS HOURLY REPORTS OF WIND DIRECTION, WIND SPEED
C (KNOTS), SEA LEVEL PRESSURE (MB), AND TEMPERATURE (DEG F)
C FOR INPUT TO WIND ANALYSIS FOR DIABLO PGE SITE.
C COMPUTE GEOS WIND FROM PRESSURE AT THREE STATIONS AND
C CORRECT IT FOR THERMAL WIND COMPONENT (IF DESIRED).
C ASSUME THAT WIND COMPONENTS VARY WITH LOG(HEIGHT) BETWEEN
C ANEMOMETER HT AND GEOS WIND AT HT GEOSHT(ABOUT 500M).
C AT EACH NWS STATION INTERPOLATE WINDS TO SIGMA SURFACES.
C BY RM ENDLICH, SRI INTN'L, MENLO PARK CA 94025 DEC '84.
, VARIABLES
C NUMNWS = NUMBER OF NWS REPORTS
C NWSID = IDENTIFICATION ID OF NWS STATION
C WD = WIND DIRECTION
C. SP = WIND SPEED

STLT = STATION LATITUDE IN DEGS AND HUNDREDTHS
.2 STLN = STATION LONGITUDE
C PRESS = STATION SEA LEVEL PRESSURE IN INCHES HG

- C TEMP = STATION TEMP IN DEG F
LOGICAL DBUG(15), UTMUSE
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INTEGER STAID(50)
DIMENSION STLT(50), STLN(50), PRESS(50)

*DIMENSION TEM4P(50)
DIMENSION RHS1(50,6), INWS(50,6), VNWS(50,6)
DIMENSION UCOMP(50), VCOMP(50), WD(50), WS(50)
DIMENSION XS(50), YS(50)
DIMENSION XG1(50), YG1(50), USIG1(5O,6), VSIG1(50,6)
COMMON /LIMITS/NCOL,NROW, NLVL, NCOLM1 ,NROWM1,

* $ LOWIX(5,3) ,LOWIY(5,3) ,SFCMAX
COMMON/RARS/RHS( 25, 25, b)
COMMON/PARMS/ZTOP,DS,DSIGMA,NLVLM41,XHT1,XHT2,Xl,Y1,
I X2,Y2,UG,VG,RATIO,TDSI
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON /STALOC/ XG(50), YG(50)
COMO)N /WINDS/ USIG(50,6), VSIG(50,6)
COMMON /ANCHOR/ SLAT, SLNG ,UTMUSE
COMMON /NiJMOBS/ NUMDOP, NUMNWS, NUlITOT
COMMON /UPWIND/ UTOP, VTOP

45 IF(DBUG(3)) PRINT 9001
* c
*C READ INPUT OF HOURLY DATA: STATION ID, LATITUDE, LONGITUDE (UTMUSE=F) OR

C UTM COORDS (KM,UTMUSE=T) PRESSURE, TEMPERATURE, WIND DIR., WIND SPEED (MPS)

DO 70 IT=1,NUMNWS
READ (12, 10) STAID(IT), STLT(IT), STLN(IT),

* C 4 PRESS(IT), TEMP(IT), WD(IT), WS(IT)
READ (12,*) STAID(IT), STLT(IT), STLN(IT),

4 PRESS(IT), TEMP(IT), WD(IT), WS(IT)
IF(DBUG(3)) PRINT 20, IT, STAID(IT),STLT(IT),STLN(IT),

+ PRESS(IT),TEMP(IT)
IF(DBUG(3)) PRINT 25, WD(I'r), WS(IT)

70 CONTINUE
* C
*C CONVERT LAT,LONG (UTMUSE=F) OR UTM COORDS(KM,UTMUSE=T) TO XS,YS (KM)

CMEASURED FROM SW CORNER OF COARSE GKIt)

DO 15 J=1,NUMNWS
IF (UTMUSE) THEN

XS(J)=STLN(j)-SLNG
YS(J)=STLT(J )-SLAT

ELSE
XS(J)=(STLN(J)-SLNG)'(1.11.0'COS(SLAT/57.295))
YS(J)=(STLT(J)-SLAT)*1±1 .0

END IF
XS(J)=XS(J) + IXS*(DS*.001)
YS(J)=YS(J)+JYS*(DS* .001)
XG1(J)=XS(J)/(DS' .001)
YG1(J)=YS(J)/(DS* .001)

15 CONTINUE
IF(DBUG(3)) PRINT 9008
IF(DBUG(3)) PRINT 9011, (XS(J), YS(J),XG1(J),YG1(J),

$ J=1,NUMNWS)
C CHANGE DIRECTION AND SPEED (MPS) TO U AND V

DO 80 IT=1,NUMNWS
UCOMP(IT)=-WS( IT)*SIN(WD( IT)/57. 295)
VCOM4P(IT)=-WS(IT)*COS(WD(IT)/57. 295)

IF(DBUG(3)) PRINT 9002
IF(DBUG(3)) PRINT 9013, IT, UCOMP(IT), VCOMP(IT)

bo0 CONTINUE
C ASSIGN HEIGHTS TO SIGMA SURFACES

DO 125 J=1,NUMNWS
DO 120 K=1,NLVL

IX=JNINT (XG1CJ))
JY=JNINT (YG1(J))
IF (IX.LT.1) IX=l
IF (IX.GT.NCOL) IX=NCOL
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IF (JY.LT.1) JY=1
IF (JY.GT.NROW) JY=NROW
RHS1( , K)=RHS( IX,JY, K)

120 CONTINUE
IF(DBUG(3)) PRINT 9024
IF(DBUG(3)) PRINT 9015, J, (RHS1(J,K),K=1,NLVL)

125 CONTINUE
CIF LESS THAN 3 NWS STATIONS CANT COMPUTE GEOS WIND. INSTEAD

C USE UTOP, VTOP FROM DOPPLER.
IF (NUMNWS.LT.3) UGEOS=UTOP
IF (NUMNWS.LT.3) VGEOS=VTOP
IF (NUMNWS.LT.3) GO TO 200

C
C**THIS SECTION COMPUTES GEOSTROPHIC WINDS AND IT ALSO CORRECTS
C THEM FOR THERMAL WINDS IF NTHERM=l.
C

* IS1=NLJMNWS-2
IS2=NUMNWS-1

* 153=NUMNWS
C SET NTHERM

NTHERM~l
PR1=PRESS( 151) '(1013.3/29.92)
PR2=PRESS( 152)*( 1013.3/29.92)
PR3=PRESS( 153)*(1013 .3/29.92)
STLT1=STLT(IS1)
STLT2=STLT( 1S2)
STLT3=STLT( 1S3)
STLN1=STLN ( 51)
STLN2=STLN( 1S2)
STLN3=STLN( 1S3)
TMP1=TEMP( IS1)
TMP2=TE.MP( 1S2)
TMP3=TEMP(IS3)

C DEFINE CONSTANTS
AVLAT=.333* (STLT1+STLT2+STLT3)/57.295
FC=14.584*SIN (AVLAT)

c CORIOLIS FORCE IN UNITS 10-5 SEC-i
COSLAT=COS (AVLAT)
DENOM=(STLT2-ST Tl)*(STLN3-STLN1)-(STLT3-STLT1)
+ (STLN2-STLN1)
RHO= 1.1

C DENSITY IN UNITS 10-3 G/CM3
C2=100. 0/(RHO*1. 112)

,2 COMPUTE GEOSTROPHIC WINDS
DPDLT=((STLN2-STLN1)*(PR3-PR1)-(STLN3-STLN1)*
+ (PR2-PRI))/(-DENOM)
DPDLN=((STLT2-STLT1)*(PR3-PR1)-(STLT3-STLT1) *

+ (PR2-PR1))/DENOM
UGEOS= (-C2/FC) 'DPDLT
VGEOS= (C2/FC) '(DPDLN/COSLAT)

C SPEED UNITS ARE M SEC-i
IF(DBUG(3)) PRINT 30, UGEOS, VGEOS

C THIS PART MAKES THERMAL WIND CORRECTION TO UGEOS, VGEOS
C NTHERM IS INDICATOR FOR USE (WHEN=l)

IF (NTHERM .NE. 1) GO TO 200
FVNIN=5 .0/9.0
TMPI=(TMPl-32.0)'FVNIN
TMP2=(THP2-32. 0)*FVNIN
TMP3=(TMP3-32 .0) 'FVNIN
AVTHP=273 .0+ .333' (TMPiI-TMP2+TMP3)

CGRAVITY=9.8 M SEC-2, TEMP IN DEG K
C3=9.8/(FC'1. 112)
DTDLT=((STLN2-STLN1)* (TMP3-TMP1)-(STLN3-STLN1)

*(TMP2-Tt4Pl))/(-DENOM)
DTDLN=( (STLT2-STLT1)t (TMP3-TMP1 )-CSTLT3-STLT1)

* (TMP2-TMP1) )/DENOM
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UTHERM=- (C3/AVTMP) 'DTDLT
VTHERM= (C3/AVTM4P) *(DTDLN/COSLAT)

CASSUME SHEAR ACTS OVER LAYER OF DEPTH DEPL (IN M)
DEPL=200 ! TIE THIS IN TO AVTHK FOR B LYR TOP

USHEAR=UTHERM*DEPL
VSJIEAJ=VTH-ERM*DEPL
IF(DBUG(3)) PRINT 40, USHEAR, VSHEAR, DEPL

UGEOS=UGEOS+USHEAR
VGEOS=VGEOS+VSHEAR

*IF(DBUG(3)) PRINT 50
IF(DBUG(3)) PRINT 30, UGEOS, VGEOS

200 CONTINUE
.**END OF GEOSTROPHIC WIND SECTION
C INTERPOLATE WINDS BETWEEN SFC AND GEOSHT

DO 450 ITzl, NUIOJWS
DO 400 K=2, NLVL ! COUNTER FOR SIGMA LEVELS

IF (RI-S1(IT,K).GT.0.0) GO TO 370
UNWS( IT,K)=0. 0
VNWS(IT,K)=0.0
GO TO 400

370 IF (RHS1(IT,NLVL).GE.800.) GEOSHT=800.
IF (RHS1(IT,NLVL) .LT. 800.) GEOSH-T=RHS1(IT,NLVL)

IF (RHS1(IT,K).GT.GEOSHT) GO TO 380
C FOR SIGMA LEVELS BETWEEN SURFACE OBS AND GEOSHT

RATIO=(ALOG10(RHS1(IT,K))-..0)/(ALOG10(GEOSHT)-l.0)
UNWS(IT,K)=UCOMP(IT) +(UGEOS-UCOMP(IT))*RATIO
VNWS(IT,K)=VCOMP(IT) +(VGEOS-VCOMIP(IT))*RATIO
GO TO 400

C FOR SIGMA LEVELS ABOVE GEOSHT
380 UNWS(IT,K)=UGEOS

VNWS( IT,K)=VGEOS
400 CONTINUE

IF(DBUG(3)) PRINT 9020, IT
IF(DBUG(3)) PRINT 9010, (UNWS(IT,K), VNWS(IT,K), K=1,NLVL)

450 CONTINUE
C INCLUDE NWS DATA WITH DOPPLER DATA IN ARRAYS NEEDED
C FOR OBJECTIVE ANALYSIS.

DO 460 N=1, NUMNWS
M=NiNUMDOP
XG(M)=XG1(N)'
YG(M)=YG1(N)

* DO 460 K=l, NLVL
USIG(M,K)=UNWS(N,K)
VSIG(M,K)=VNWS(N,K)

46~0 CONTINUE
NUMTOT=NUMDOP ±NUMNWS
DO 480 M=l, NUMTOT
IF(DBUG(3)) PRINT 9020,M
IF(DBUG(3)) PRINT 9010, (USIG(M,K), VSIG(M,K), K=1,NLVL)

480 CONTINUE
IF(DBUG(3)) PRINT 9003

10 FORMAT (15,2F8.2,4F7.1)
20 FORMAT (/' NO.='13,' STA ID='I5,1 LAT='F7.2,' LONG.

-t ='F7.2,' PRESS='F7.2,' TE-MP='F6.1/)
25 FORMAT (' WIND DIR='F6.1,' WIND SPEED='F5.1/)
30 FORMAT (' GEOSTROPHIC WIND COMPONENTS, MPS, U ='F5.1,

+t V ='F5.1/)
40 FORMAT (//' THERMAL WIND SHEAR COMPONENTS, MPS, U

+ F5.1,1 V ='F5.1,' LAYER DEPTH ='F6.1,' M'/)
* 50 FORMAT (/'GEOSTROPHIC WIND CORRECTED FOR THERMAL WIND')

jo0l1 FORMAT (' BEGIN SUBROUTINE GEOSIG /
9j002 FORMAT (/'STA. NO. U COMP V COMP )
4003 FORMAT C' END OF SUBROUTINE GEOSIG ')
4008 FORMAT (I'X AND Y OF STATIONS IN KM AND IN COLS,ROWS

t FROM SW CORNER OF COARSE GRID'/)
4010 FORMAT (3X,8F6.1)
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9011 FORMAT (/4X,2F11.0,8X,2F10.1)
_i0l3 FORMAT (/' STA. ='15,' UCOMP='F8.1,' VCOMP='F8.1/)
9015 FORMAT (3X,IS,8F8.l)
,jo20 FORMAT (/' STATION NUMBER ='16/)
9024 FORMAT (/ HEIGHTS OF SIGMA SURFACES 9/)

RETURN
END

SUBROUTINE GPAN(DBUG)
C
C THIS ROUTINE MAKES A GRID PT ANALYSIS FROM AVAILABLE
C WIND OBSERVATIONS. THE OBSERVATIONS HAVE BEEN INTERPO-
C LATED TO SIGMA SURFACES. THE WEIGHTING GIVEN TO EACH
C STATION IS INVERSELY PROPORTIONAL TO ITS DISTANCE FROM
C THE GRID POINT.
C FOR SUBROUTINE DIABWND, JAN '85.
C BY R.M. ENDLICH, SRI INTN'L, MENLO PARK CA 94025.
C

LOGICAL DBUG(15)
INTEGER STAID(6)
DIMENSION WT(50)
COMMON /WINDS/ USIG(50,6), VSTC('(n.6)
COMMON /STALOC/ XG(50), YG(5u)
COMMON /LIMITS/NCOL,NROW,NLVL,NCOLM1,NROWM1,

LOWIX(5,3),LOWIY(5,3),SFCMAX
COMMON/UARS/U(25,25,6),UA(25,25,6),V(25,25,6),VA(25,25,6)
COMMON /NUMOBS/ NUMDOP, NUMNWS, NUMTOT
COMMON /PRLIM/ If, 12

C VARIABLES ARE:
C USIG=U COMP OF WIND ON A SIGMA SFC
C VSIG=V COMP OF WIND ON A SIGMA SFC
C WT=WEIGHT ASSIGNED TO A GIVEN STATION
C U(I,J,K) AND V(I,J,K) ARE FINAL WIND COMPONENTS
C NLVL=NUMBER OF SIGMA LEVELS
C XG,YG ARE DISTANCES OF STATIONS FROM SW CORNER OF COARSE
c GRID AND ARE MEASURED IN GRID UNITS (DSCRS)
C IN ARRAYS (IT,K) IT DENOTES STATIONS, K DENOTES LEVELS
" IN 3-D ARRAYS I,J ,K DENOTE COLS, ROWS, LEVELS FROM SW CORNER
C-----------------------------------

IF(DBUG(4)) PRINT 9001
2 SET MINIMUM DISTANCE (GRID UNITS) TO AVOID INFINITE WTS

DISMIN=0.15
DO 400 I=l, NCOL
DO 400 J=l, NROW

SUMWT=O. 0
DO 100 IT=l, NUMTOT

DIST=(FLOAT(I)-XG(IT) )**2+(FLOAT(J)-YG(IT))**2
DIST=SQRT(DIST)
IF (DIST.LE.DISMIN) DIST=DISMIN
WT(IT)=1.0/(DIST*DIST)
SUMWT= SUMWT*WT ( IT)

J00 CONTINUE
2 NORMALIZE WEIGHTS

DO 120 IT=l, NUMTOT
WT (IT)=WT(IT)/SUMWT

120 CONTINUE
IF (J EQ. 11) THEN

IF(DBUG(4)) PRINT 9030, I, J
IF(DBUG(4)) PRINT 9010, (W'(IT),IT=1,NUMTOT)

END IF
C MAKE GRID POINT ANALYSIS USING WTS AND STA DATA

DO 350 K=I, NLVL
U(I,J,K)=0.0
V(I,J,K)=0.0
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DO 300 IT=1, NUMTOT
U(I,J,K)=U(I,J,K)IWT(IT)*USIG(IT,K)
V(I,JK)=V(I,J,K)+WT(IT)*VSIG(IT,K)

300 CONTINUE
350 CONTINUE
400 CONTINUE

IF (DBUG(4)) THEN
DO 430 K=2, NLVL

PRINT 9035, K
DO 420 JR=I, NROW

JP=NROW+ 1-JR
420 PRINT 9031, (U(IP,JPK),IP=II,I2)

PRINT 9038, K
DO 425 JR=1, NROW

JP=NROW+ 1-JR
425 PRINT 9031, (V(IP,JP,K),IP=11,12)
430 CONTINUE

PRINT 9002
END IF

'001 FORMAT (/ BEGIN SUBROUTINE GPAN '/)
.,02 FORMAT (//' END OF SU4.E)URTI4L Oitis,,/
jul0 FORMAT (3X,8F6.1)
,030 FORMAT (/' WTS FOR STATIONS FOR GRID POINT X,Y='213)
9031 FORMAT (1X,21F5.1)
9035 FORMAT (/ U COMPONENT AT LEVEL ='13/)
9038 FORMAT (' V COMPONENT AT LEVEL = '13/)

RETURN
END

SUBROUTINE LEVND(DBUG,IG,ZFLAT)

C LINEARLY INTERPOLATES WINDS FROM SIGMA SURFACES TO HORIZONTAL PLANES OR
C TO A HEIGHT OF 10 M ABOVE THE LOCAL TERRAIN FOR THE 1ST LEVEL
C --F.LUDWIG, 12/23/85
C

LOGICAL DBUG(15)
DIMENSION ZFLA.T(6)
COMMON /BLHT/ BLT(25,25),HSITE, AVTHK, SLFAC,STHK,BLGRX,BLGRY
COMMON/RARS/RHS(25,25,6)
COMMON/CSFC/SFCHT(25,25),SIGMA(6)
COMMON/UARS/U(25,25,6),UA(25,25,6),V(25,25,6) ,VA(25,25,6)
COMMON/WARS/W(25,25,6) ,WA(25,25,6)
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1, NROWM1,

LOWIX(5,3),LOWIY(5,3),SFCMAX

C STATEMENT FUNCTION FOR LINEAR INTERPOLATION.

VALINT(A1,A2,X)=AI+(A2-AI)*X
IF (DBUG(15)) PRINT*, 'START LEVWND'

"A. c
C GET LOWEST PTS AT SFC & TOP OF BOUNDARY LAYER, THEN DEFINE LAYER HTS.
C

SFCMIN=SFCHTCLOWIX(1, IG) ,LOWIY(1, IG))
THICK=RHS(LOWIX(1,IG),LOWIY(1,IG),NLVL)
DO 25 L=I,NLVL

ZFLAT(L)=SFCMIN THICK*SIGMA (L)
IF (DBUG(14)) PRINT *, ZFLAT(L),'HT AT LEV',L

25 CONTINUE
DO 100 IX=1,NCOL
DO 100 IY=1,NROW

1ST LEVEL IS NOT FLAT; IT IS SET AT 10 M ABOVE THE LOCAL TEKRAIN.
'S. C

ZFLAT(1)=SFCHT(IX,IY)+10.0

5,.
'S.
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DO 75 IFLAT=1,NLVL

CIS THIS LEVEL MORE THAN 1/2 METER ABOVE GROUND?

IF(ZFLAT(IFLAT)-SFCHT(IX,IY).GT.0.5) THEN
DO 50 IZ=2,NLVL

C FIND THE FLOW SFCS BETWEEN WHICH THIS FLAT SFC LIES & DO LOG INTERPOL.

IF(RHS(IX,IY,IZ)*SFCHT(IX,IY).GE.ZFLATCIFLAT))
THEN
ZBLO=RHS( IX, IY, IZ-1)
IF (ZBLO.LT.1.)ZBLO=1.0
DZT'=ALOG10(RHS( IX, IY, IZ)/ZBLO)
ZFLq'=ZFLAT( IFLAT)-SFCHTC IX, IY)
IF (ZFLT .LT. 1.0) ZFLT=1.0
D Z F'ALOG 10( Z F L'f,::P L,
RATIO=DZF/DZT
IF(RATIO.GT.1.001)STOP 'BAD RATIO IN LEVWND'
UA( IX, IY, IFLAT)=VALINT(U( IX, IY, IZ-1) ,U( IX, IY, IZ),

$ RATIO)
VAC IX,lY, IFLAT)=VALINTC VCIX, IY, IZ-1) ,V( IX,I Y, IZ),

$ RATIO)
WAC IX, IY, IFLAT)=VALINT(W( IX, IY, IZ-1) ,W( IX, IY, IZ),

GO TO 75 RTO

END IF
CONTINUE

ELSE
UA( IX, IY, IFLAT)=0.0
VA( IX, IY, IFLAT)=0.0
WA( IX, IY, IFLAT)=0.0

END IF
75 CONTINUE
Ibu CONTINUE

IF(DBUG(14)) PRINT ', END LEVWND'
RETURN
END

SUBROUTINE REINT(DBUG,L)

C INTERPOLATES LOG-LINEARLY TO GET U&V FOR LEVEL L USING NEXT LOWER LEVEL
C&THE TOP LEVEL. LOWEST & HIGHEST LAYERS ARE DETERMINED 1ST,THEN 3,4 ETC

LOGICAL DBUG(15)
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1 ,NROWM1,
S LOWIX(5,3),LOWIY(5,3),SFCN-AX

COMMON /RARS/RHS(25,25,6)
COMMON /UARS/U(25,25,6) ,UA(2-5,25,6) ,V(25,25,6) ,VA(25,25,6)

C2 STATEMENT FUNCTION FOR INTERPOLATING

VALU(X1 ,X2 ,DT,D )=X1* (X2-Xl) *D1/DTr
ZERO=0 .0
IF (DBUG(13)) PRINT*,'START REINT'
DO 100 I=1,NCOL
DO 100 J=1,NROW

IF(RHS(I,J,L-1).GT.0.0) THEN
ZB=RHS( I,J,L-1)
IF(ZB.LT.10. )ZB=10.0
DLT=ALOG1O(RHS( 1,3,NLVL)/ZB)
DL1=ALDG10(RHS( I,J,L)/ZB)

VCI,J,L)=VALU(V(I,J,L-1),V(I,J,NLVL),DLTDI)
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ELSE
ASSUMEIF(RHB(I,J,L).GT.0.5) THEN

C ASUEWIND=O BELOW 0.5 METER
c

DLT=ALOG1O(RHS(I,J,NLVL)/0. 5)
DLJ.=ALOG10(RHS( I,JL)/0.5)
U(I,J,L)=VALU(ZERO,U(I,J,NLVL) ,DLT,DL1)
V( I,J,L)=VALU(ZERO,V( I,J,NLVL) ,DLT,DL1)

ELSE
U(I,J,L)=0.0
V( I,J, L)=0. 0

END IF
END IF

100 CONTINUE
IF(DBUG(13)) PRINT*, 'END REINT'
RETURN
END

c~

SUBROUTINE RESIG(DBUG, IG)

C REDEFINES THE HEIGHTS OF THE SIGMA SURFACES BASED ON WIND SPEED OVER
*C THE LOWEST TERRRAIN HEIGHTS & LAPSE RATES AT THE VARIOUS SIGMA LEVELS

C -- THE UNDERLYING CONCEPT IS SIMILAR TO THAT OF THE "CRITICAL STREAMLINE."

LOGICAL DBUG(15)
DIM4ENSION RHSLO(6) ,DZMAX(6),COMPDZ(5)
COMMON /SOUND/ PTLAPS(6),TO(6)
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1, NROWM1,
S LOWIXC5,3),LOWIY(5..3),SFCMAX

COMMON /RARS/RHS(25,25,6)
COMMON /BLHT/ BLT(25,25),HSITE, AVTHK, SLFAC,STHK,BLGRX,BLGRY
COMMON /CSFC/ SFCHT(25,25),SIGMAC6)
COMMON /UARS/U(25,25,6),UA(25,25,6),V(25.25,6) ,VA(25,25,6)
DATA RHSLO,CMPRES /6*0.0,0.5/

CGETTING RMS AVERAGE WIND SPEED OVER LOW TERRAIN GRIDS & LOWEST PT.

IF (DBUG(5)) PRINT *, 'START RESIG'
LX=LO)WIX( 1, IG)
LY=LOWIY(1,IG)
SFCMIN=SFCHT(LX, LY)
HIR ISE=SFCMAX-SFCMIN
DO 100 I=1,6

RMSSPD=0.0
DO 50 J=1,5

J1LWX(,G
JX=LOWIX(J, IG)

RMSSPD=RMSSPD+U(JX,JY, I) **2+V(JX,JY, I)*"2
s0 CONTINUE

RHSLO( I )RHS(LX, LY, I)
SPD=SQRT(RMSSPD/5.0)
IF (DBUG(5)) PRINT *,'RMS SPEED AT LEV',I,SPD
DTHETA=PTLAPS(I)
IF (DTHETA.LT.l.E-20) DTHETA=1.E-20
DZMAX(I)=SPD/SQRT(9.8*DTHETA/TO.I))
IF(DBUG(5)) PRINT*,'DZMAX=',DZMAX(I),'AT LEV',I

1luo CONTINUE

c FLOW AMPLITUDES ARE LIMITED TO TERRAIN AMPLITUDE ON FIRST PASS
c

* IF (DZMAX(NLVL).GT.HIRISE) DZMX(NLVL)=HIRISE

5C GETTING 1/2 THE SIGMA SFC SEPARATIONS OVER THE LOW SFC POINT.

* 66



%,

DO 125 L=1,NLVL-1
COMPDZ(L)=CMPRES*(RHSLO (L+1)-RHSLO(L))

125 CONTINUE
C
C DO NOT LET SEPARATION BETWEEN SFCS COMPRESS BY MORE THAN CMPRES FACTORC

DO 150 L=NLVL-1,1,-I
IF (DZMAX(L).GT.(DZMAX(I.+)+CC)MP.Z(I. ))) DZMAX( I.)=1 DMAX(L+l)

$ COMPUZ(L)
IF (DZMAX(L).GT. HIRISE) DZMAX(L)=HIRISE
IF(DBUG(5)) PRINT*,'DZMAX=',DZMAX(L),'AT LEV',L

150 CONTINUE
C
C NOW, GO BACK & MAKE SURE THAT HIGHER SURFACES DO NOT RISE MORE THAN
C SURFACE DIRECTLY BELOW, IF THE SFC BELOW IS ABOVE THE TERRAIN HEIGHT
C --SIMILAR TO THE CONSTRAINT THAT THE GREATEST ALLOWABLE DEVIATION IS
C TO PARALLEL THE TERRAIN.
C

DO 165 L=3,NLVL
IF ( (RHSLO(L-1)+DZMAX(L-1)) .LT. SFCMAX ) GO TO 165
IF (DZMAX(L).GT.DZMAX(L-1)) DZMAX(L)=DZMAX(L-1)

165 CONTINUE
DO 200 IX=1,NCOL
DO 200 IY=1,NROW

C LOCAL RISE OF SIGMA SFC WILL BE PROPORTIONAL TO THE MAXIMUM RISE (WHICH
C OCCURS OVER HIGHEST TERRAIN POINT) AND THE RATIO OF THE RISE OF THE
C LOCAL GROUND SURFACE TO THE MAXIMUM TERRAIN ELEVATION DIFFERENCE.

2 C

HERE=SFCHT( IX, IY)
ZRATIO= (HERE-SFCMIN)/HIRISE
DO 175 L=1,NLVL

RISE=ZRATIO*DZMAX( L)
RHS( IX, IY,L)=RHSLO(L)1*SFCMIN+RISE-HERE

175 CONTINUE
C

C DEFINE LOCAL BOUNDARY LAYER THICKNESS
C

BLT( IX, IY)=RHS(IX, IY,NLVL)*HERE
200 CONTINUE

IF (DBUG(5)) THEN
DO 300 L=I,NLVL

PRINT 6000,L
DO 250 IY=NROW,I,-I

PRINT 6001, IY,(RHS(IX,IY,L),IX=1,NCOL)
WRITE (15,6003) (RHS(IX,IY,L)+SFCHT(IX,IY),IX=1,NCOL)

250 CONTINUE
PRINT 6002,(IX,.IX=1,NCOL)

300 CONTINUE
END IF

to00ou FORMAT(lHI, 'LEVEL=',12)
6001 FORMAT(IHO,12,25F5.0)
r,002 FORMAT(IX,'COL',IX,25(I2,3X))
t,003 FORMAT(IX,25F5.0)

IF (DBUG(5)) PRINT *,'END RESIG'
RETURN
END

C
c

SUBROUTINE SETBLT(DBUG)
*' THIS SUBROUTINE SETS THE HEIGHT OF THE BNDY LAYER TOP. AVTHK IS

AVER. BL THICKNESS OVER AREA. SLFAC CONTROLS THE SLOPE, IF 0 THE
- TOP IS FLAT, IF 1 THE BL TOP FOLLOWS THE TERRAIN. HSITE IS HT OF
2 THE ANCHOR POINT (SITE), STHK IS THE SMALLEST BL THICK ALLOWED.
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C BUGRX IS B LYR HT GRADIENT TO E.
C BY R. M4. ENDLICH SRI INTNL
C LAST REVISION JUNE '84

LOGICAL DBUG(15)
DIMENSION B(25,25),IB(25.25)
COMON /LIMITS/N4CQL, NkOW, NLVL, t4CoULi,. ,-n--

$ LOWIX(5,3) ,LOWIY(5,3),SFCMAX
COMMON/CVOS/ RCM,RMF, IV,DSCRS, IXCRS,JYCRS, IXMED,JYME-D,

$ IXFIN,JYFIN
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON /BLH-T/ BLT(25,25),HSITE, AVTHK, SLFAC,STHK,BLGRX,BLGRY
COMMON/CSFC/ SFCiIT(25,25), SIGMA(6)
COMMON /PRLIM/ Il, 12
IF(DBUG(6)) PRINT 9001
THK=AVTHK
IF (IGRID.GT.1) THK=THSITE

IF (IGRID .NE.1) GO TO 5
BLX=BLGRX
BLY=BLGRY
IX=IXCRS
JY=JYCRS

5 CONTINUE
IF (IGRID .NE. 2) GO TO 6
BLX= BLGRX/(RCM)
BLY=BLGRY/(RCM)
IX=IXMED 5

JY=JYMED
6 CONTINUE

IF (IGRID .NE.3) GO To 7
BLX=BLGRX/(RCM*RMF)
BLY=BLGRY/(RCM*RM4F)
IX= IXFIN
JY=JYFIN

7 CONTINUE
ITER=0

I() ITER=ITERt1
SLJMI=0. 0

Q1=0.0
DO 50 I=1,NCOL
DO 50 J=1,NROW

BLT(I,J)=THK+(SLFAC*SFCHT(I,J))+(1.0-SLFAC)*HSITE
ADD EASTWARD GRA.DIENT TO BLT FROM COL. OF ANCHOR POINT

BLT(I,J)=BLT(I,J)+ (I-IX)*(BLX/FLOATJ(NCOL))
SADD NORTHWARD GRADIENT FROM ROW OF ANCHOR POINT

BLT(I,J)=BLTCI,J)+(J-JY)*(BLY/FLOATJ(NROW))
IF (SFCHT(I,J).GT.(BLT(I,J)- STHK)) BLT(I,J)=SFCHT(I,J)

+ +STHK
SUM1=SUMIt(BLT(I,J)-SFCHT(I,J))
Q1=Q1.0

50 CONTINUE
IF(IGRID.GT.1) GO TO 51

ATH=SUMl/Ql
THK=THK+ (AVTIIK-ATH)
THSITE=BLT( IXS,JYS)-SFCHT( IXS,JYS)
IF(DBUG(6)) PRINT 9010, AVTH-K,ATH, THSITE
DIFF=ABS (AVTHK-ATH)
IF (ITER.GT. 9) GO TO 52
IF (IGRID EQ. 1 .AND. DIFF.GT.1.0) GO TO 10

SI CONTINUE
IF(IGRID.EQ.1) GO To 52

MAKE BL THICKNESS AT ANCHOR POINT (THSITE) THE SAME FOR
M4ED AND FINE GRIDS AS IT WAS FOR COARSE GRID

ATH=SUMl/Ql
THSITE2=BLT( IXS,JYS)-SFCHT( IXSJYS)
THK=THK-(THSITE-THSITE2)
DIFF2=ABS(THSITE-THSITE2)
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IF(DBUG(6)) PRINT 9010, AVTHK,ATH,THSITE2
IF(ITER.GT.9) GO TO 52
IF(DIFF2.GT.I.0) GO TO 10

52 CONTINUE
DO 55 JP=1,NROW
DO 55 IP=1,NCOL

B(IP,JP)= BLT(IP,JP)
IB( IP,JP)=JNINT(B(IP,JP) )

55 CONTINUE
IF(DBUG(6)) PRINT 9115,IGRID
DO 60 JP=1,NROW
JR=NROW+ 1 -JP

60 IF(DBUG(6)) PRINT 9105, (IB(IP,JR),IP=II,I2)
DO 65 JP=1,NROW
DO 65 IP=1,NCOL
B(IP,JP)=(BLT(IP,JP)-SFCHT(IP,JP))
IB(IP,JP)=JNINT(B(IPJP))

65 CONTINUE
IF(DBUG(6)) PRINT 9020
DO 70 JP=I,NROW

* JR=NROW *l-JP
70 IF(DBUG(6)) PRINT 9105, (IB(IP,JR),IP=II,I2)

IF(DBUG(6)) PRINT 9002
9001 FORMAT (1H1,' BEGIN SUBROUTINE SETBLT'/)
9002 FORMAT (//' END OF SUBROUTINE SETBLT'/)
9010 FORMAT ( INITIAL AV. THICKNESS, M='F10.1,

+ * ACTUAL AV. THICKNESS ='F10.1,
' SITE THICKNESS ='FIO.1/)

9U20 FORMAT(IH1,'BNDY LAYER THICKNESS IN M'/)
9105 FORMAT (/lX,2515)
9115 FORMAT (1H,' HEIGHT OF BNDY LAYER TOP, M, GRID ='13)

RETURN
END

SUBROUTINE SETMAT(VALUE,ARRAY,NUM1,NUM2)

c INITIALIZES AIL ELEMENTS OF ARRAY TO VALUE
REVISON SEPT. 1978

DIMENSION ARRAY(NUMiNUM2)
DO 10 I=1,NUM1
DO 10 J=1,NUM2

10 CONTINARRAY( I ,J)=VALUE
S10 CONTINUE

RETURN
END

c

SUBROUTINE STRAT(DBUG, IG)

READS SOUNDING INFORMATION,CALCULATES LAPSE RATES & OTHER PARAM-
C ETERS FOR VARIOUS SIGMA LEVELS

LOGICAL DBUG(15)
DIMENSION Z(50),T(50),P(50),DPTDZ(49),ZMID(49)
COMMON /RARS/RHS(25,25,6)
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1, NROWM1,

S LOWIX(5,3),LOWIY(5,3),SFCMAX
. COMMON /SOUND/ PTLAPS(6),TO(6)

- STATEMENT FUNCTION FOR POTENTIAL TEMPERATURE

THETA(P,T)=(r1273.13)*((1000./P)*'0.288)
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ZREAD NO. OF HEIGHTS IN SOUNDING & DATA INPUT FORM-
P. . ITYP=1--

C HEIGHT,POT TEMP LAPSE RATE
C ITY=2--

c HEIGHT, TEMP & PRESSURE
C
c READ(13,6001) NHITES,ITYP
C READ(13,6002)(Z(I) ,T(I) ,P(I) ,I=1,NHITES)

F' C
IF (DBUG(8)) PRINT *,'START STRAT'
READ(13,*) NHITES,ITYP
IF (DBUG(8)) PRINT *,'NHITES,ITYP', NHITES,ITYP
DO 10 I=l,NHITES

READ(13,*) Z(I),T(I),P(I)
IF (DBUG(8)) PRINT't, Z(I),T(I),P(I)

10 CONTINUE
p

4  IF(ITYP.EQ.1) THEN
DO 20 I=1,NHITES-1

F' DPTDZ( I )P(I)
ZMID(I)=Z(I)

20 CONTINUE
ELSE

* DO 30 I=1,NHITES-1
DPTDZ(I)=(THETA(P(It1),T(I+1))-THETA(P(I),T(I)))/

$ (Z(Vtl)-Z(I))
* ZMID(I)=0.5*(Z(I)4Z(1tl))

30 CONTINUE
END IF

-4c

C GETTING AVERAGE HEIGHT OF LOWEST SIGMA SFCS

DO 100 I=1,6
ZBAR=0. 0

C GET AVERAGE HT. ABOVE LOW SPOTS FOR SIG SURFACES

DO 40 J=1,5
4% ZBAR=ZBAR+RHS(LOWIX(J, IG) ,LOWIY(J, IG) .1)

40 CONTINUE
'S ZBAR=ZBAR/5. 0

DO 50 J=2,NHITES
IF(ZMID(J) .GE.ZBAR.OR.J.EQ.NHITES) THEN

PTLAPS(I)=DPTDZ(J-1)*(ZBAR-ZMID(J-1))*
$ (DPTDZ(J)-DPTDZ(J-1))/(ZMID(J)-ZMID(J-1))

TO(I)=T(J-1)t(ZBAR-ZMID(J-1))*
* S (T(J)-T(J-1))/(ZMID(J)-ZMID(J-1))

TO( I)=TO( I)+273. 13
4, GO TO 75

END IF
,u CONTINUE

IF (DBUG(8)) PRINT*,'PTLAPS AT LEV',I,'=',PTLAPS(I)
100o CONTINUE

IF (DBUG(8)) PRINT*'END STRAT'
6001 FORMAT (213)
6002 FORMAT (3F10.3)

-~ RETURN
END

SUBROUTINE TOPO(NUM,DBUG)

READ AND COMPUTE TOPOGRAPHY AT GRID POINTS
CLAST REVISION OCTOBER '84.
CIF NIJM=0 READS TERRAIN HEIGHTS FOR ALL GRIDS.

.740.
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C IF NUM .GT. 0 PICKS TERRAIN HTS , CALLS SETBLT TO ESTABLISH
C BNDY LYR TOP, AND COMPUTES RELATIVE HTS (RHS) FOR PROPER GRID.

LOGICAL DBUG(15)
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1 , NROWMI,

$ LOWIX(5,3) ,LOWIY(5,3) ,SFCMAX
COMMON/CTOP/ MCRS,NCRS,MMED, NMED,MFIN,NFIN,NGRID
COMMON/RARS/RHS(25,25,6)
COMMON/CSFC/SFCHT(25,25),SIGMA(6)
COMMON /BLHT/ BLT(25,25),HSITE, AVTHK, SLFAC,STHK,BLGRX,BLGRY
COMMON /PRLIM/ Il, 12
DIMENSION HTCRS(25,25), HTMED(25,25), HTFIN(25,25)

C TO ACCOUNT FOR STABLE FLOWS, THE LOWEST SIGMA SFCS SHOULD
C INTERSECT HIGH TERRAIN. THE LIMIT FOR THIS INTERSECTION IS
C TERLIM (IN M).

IF(DBUG(9)) PRINT 9001,NUM
IF (NUM.GT.0) GO TO 10

C READ TERRAIN HEIGHT VALUES AT GRID POINTS IN METERS, ALL GRIDS
IF(DBUG(9)) PRINT 9006
IF(DBUG(9)) PRINT 9003

C IN HEIGHT DATA FILE NORTHERN ROW IS FIRST, SO INVERT ORDER.
C READ AND PRINT HEIGHTS AT COARSE GRID POINTS

DO 8 J=1,NCRS
JR=NCRS+1-J
READ(11,*) (HTCRS(I,JR),I=1,MCRS)

8 CONTINUE
IG=I
IF (DBUG(9)) THEN
DO 118 J=I,NCRS

JR=NCRS I-J
PRINT 4, (HTCRS(I,JR),I=I1,I2)

118 CONTINUE
END IF

C READ AND PRINT MEDIUM GRID HEIGHTS
IF (NGRID.LT.2) GO TO 120
IF(DBUG(9)) PRINT 9004

DO 9 J=I,NMED
JR=NMEDtl-J
READ(f1,') (HTMED(I,JR),I=I,MMED)

9 CONTINUE
IG=2
IF (DBUG(9)) THEN
DO 119 J=1,NMED
JR=NMED* 1-J
PRINT 4, (HTMED(I,JR),I=1,MMED)

119 CONTINUE
END IF

120 CONTINUE
C READ AND PRINT FINE GRID HEIGHTS

IF (NGRID .NE. 3) GO TO 214
DO 210 J=1,NFIN
JR=NFIN +l-J

READ(iI,*) (HTFIN(I,JR),I=I,MFIN)
210 CONTINUE

IF(DBUG(9)) PRINT 9005
IG=3
IF (DBUG(9)) THEN

DO 212 J=I,NFIN
JR=NFINe 1-J
PRINT 4, (HTFIN(I,JR),I=1,MFIN)

z12 CONTINUE
END IF

z 14 CONTINUE
GO TO 150

10 CONTINUE
DO 15 J=I,NROW
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DO 15 I=1,NCOL
IF (NUM .NE. 1) GO TO 11
SFCHT(I,J)=HTCRS(I,J)

11 CONTINUE
IF (NUM .NE. 2) GO TO 12
SFCHT( I ,J)=HTMED(I,J)

12 CONTINUE
IF (NUM .NE.3) GO TO 13
SFCHT(I,J)=HTFIN(I,J)

13 CONTINUE
15 CONTINUE

FIND HIGHEST & LOWEST TERRAIN POINTS
C

CALLXTREM( NUM, DBUG)
C' SET BNDY LAYER TOP (ARRAY BLT).

CALL SETBLT(DBUG)
C DENOTE GEOMETRIC HEIGHT ABOVE TERRAIN BY RHS

DO 67 J=1,NROW
DO 67 I=1,NCOL

ZVAR=BLT( I,J)-SFCHT( I,J)
DO 67 K=1,NLVL

RHS(I,J,K)=SIGMA(K)*ZVAR
67 CONTINUE

150 IF(DBUG(9)) PRINT 9002
2 FORMAT(8F10.2)
4 FORMAT(/,5X,21F5.0)

9U01 FORMAT (/' BEGIN SUBROUTINE TOPO, NUM='13)
9002 FORMAT (/' END OF SUBROUTINE TOPO'/)
1003 FORMAT (IHI,' TERRAIN HTS, COARSE GRID, METERS'/)
9U04 FORMAT (IHI,' TERRAIN HTS, MEDIUM GRID, METERS'/)

0uU5 FORMAT (Ih,' TERRAIN HTS, FINE GRID, METERS')
9006 FORMAT (/' PRINTOUT IS REVERSE OF INPUT - HAS NORTH ROW 1ST'/)

RETURN
END

C
C

SUBROUTINE WXANAL(NUM,DBUG)
C THIS SUBROUTINE DOES THE FOLLOWING. WHEN NUM=IGRID=I IT
C READS IN DATA FROM WIND PROFILES AND ASSIGNS WINDS TO
c SIGMA LEVELS; READS NWS STATIONS, COMPUTES THE GEOSTROPHIC
C WIND AND ASSIGNS WINDS TO SIGMA LEVELS, COMBINES SOUNDINGS AND
C HOURLY DATA, AND MAKES INITIAL OBJECTIVE WIND ANALYSIS USING
C A WT FACTOR INVERSELY PROPORTIONAL TO DISTANCE SQUARED.

WHEN NUM .GT. 1 (IGRID=I OR 2) IT SELECTS INITIAL WINDS FROM
C THE NEXT COARSER GRID.
C BY RM ENDLICH,SRI INTN'L, JAN '85

LOGICAL DBUG(15),KEY
COMMON /LIMITS/NCOL, NROW, NLVL, NCOLM1,NROWMI,

$ LOWIX(5,3),LOWIY(5,3),SFCMAX
COMMON /CVOS/ RCM,RMF,IV,DSCRS,IXCRS,JYCRS,IXMED,JYMED,

+ IXFIN,JYFIN
COMMON/RARS/RHS(25,25,6)
COMMON /SITE/ IXS, JYS, THSITE, IGRID
COMMON/UARS/U(25,25,6),UA(25,25,6),V(25,25,6),VA(25,25,6)
COMMON /NUMOBS/ NUMDOP, NUMNWS, NUMTOT
DIMENSION UTEMP(25,25), VTEMP(25,25)
IF(DBUG(10)) PRINT 9001, NUM

LINES TO STATEMENT 300 ARE USED TO READ SOUNDINGS ONLY FOR COARSE
2 GRID--NUM=1.

IF (NUM.GT.1) GO TO 200
KEY= .TRUE.
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C READ WIND SOUNDINGS AND ASSIGN TO SIGMA LEVELS
CALL DOPSIG(DBUG,KEY)

C READ NWS REPORTS AND INTERPOLATE TO SIGMA SFCS
READ(12,9014) NUMNWS

READ(12,*) NUMNWS
IF(DBUG(10)) PRINT 9027, NUMNWS
IF (NUMNWS.GE.1) CALL GEOSIG(DBUG)

C TOTAL NUMBER OF STATIONS (NUMTOT)=NUMDOP+NUMNWS
NUMTOT=NUMDOP+NUMNWS

C MAKE GRID POINT ANALYSIS OF DATA
CALL GPAN(DBUG)

C READ (12,9014) NTSOND
READ (12,*) NTSOND
IF (DBUG(10)) PRINT *, 'NO.OF TSONDE=',NTSOND
IF (NTSOND .EQ.1) THEN

IF (DBUG(10)) PRINT', 'WXANAL CALL STRAT,IGRID=',IGRID
CALL STRAT (DBUGIGRID)
CALL RESIG(DBUG, IGRID)
KEY=. FALSE.
CALL DOPSIG(DBUG,KEY)
CALL GPAN(DBUG)

END IF
DO 50 J=l, NROW
DO 50 I=I, NCOL
DO 40 LV=2,NLVL

C TO USE RHS NEGATIVE (BELOW TERRAIN) MAKE WINDS 0.
IF (RHS(I,J,LV).GE.0.0) GO TO 40

U(I,JLV)=0.0
V( I,J,LV)=0.0

40 CONTINUE
50 CONTINUE

GO TO 300
200 CONTINUE

, SELECT WINDS FOR SMALLER GRID FROM LARGER GRID
C ASSIGN WINDS TO MED. GRID FROM COARSE GRID

IF (NUM .NE. 2) GO TO 216
DO 215 K=2,NLVL
DO 210 I=1,NCOL
DO 210 J=1,NROW
IC=IXCRS*JNINT(FLOAT( I-IXMED)/RCM)
JC=JYCRS*JNINT(FLOAT(J-JYMED)/RCM)

C FILL IN NONZERO WINDS FROM NEAREST POINTS
IF (U(IC,JC,K) .EQ. 0..AND. V(IC,JC,K) .EQ. 0.) IC=IC*IIF (U(IC,JC,K) .EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) IC=IC-2
IF (U(IC,JC,K) .EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) JC=JC-I
IF (U(IC,JC,K) .EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) JC=JC-2
UTEP(I,J)=U(IC,JC,K)
VTEMP(I,J)=V(IC,JC,K)
TEl CONTINUE

DO 212 I=I,NCOL
DO 212 J=1,NROW
U(D ,J,K)=UTE1 P(I,J)
V(I,J,K)=VTEMP( I,J)
IF (RHS(,J,K).LE.0.0) U(I,J,K)=O.O
IF (RHS(I,J,K).LE.0.0) V(I,J,K)=0.0

212 CONTINUE
215 CONTINUE
216 CONTINUE

C SELECT FINE GRID WINDS FROM MEDIUM GRID WINDS
IF (NUM GNE. 3) GO TO 300
DO 230 K=2,NLVL
DO 225 I=I,NCOL
DO 225 J=I,NROW

IC= IXMED+JNINT(FLOAT(I-IXFIN)/RM)
JC=JYMED+JNINT(FLOAT(J-JYFIN)/RMF)

FILL IN NONZERO WINDS FROM NEAREST POINTS
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IF (U(IC,JC,K) -EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) IC~ICiJ.
IF (U(IC,JCK) .EQ. 0. .AND. V(IC.,JC,K) .EQ. 0.) IC=IC-2
IF CU(IC,JC,K) .EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) JC=JC+l
IF (U(IC,JC,K) .EQ. 0. .AND. V(IC,JC,K) .EQ. 0.) JC=JC-2
UTEMP( I,J)=U( IC,JC,K)
VTEMP( I,J)=V(IC,JC,K)

225 CONTINUE
DO 227 I=l,NCOL
DO 227 J=1,NROW
U( I,J, K) =UTEM4P(I,J)
V(I,J,K)=VTEMP(I,J)
IF (RHS(I,J.K) .LE.0.0) U( I,J,K)=0.0
IF (RHS(I,J.K) .LE.0.0) V(I,J,K)0O.0

227 CONTINUE
230 CONTINUE
300 CONTINUE

IF(DBUG(l0)) PRINT 9002
i001 FORMAT (/BEGIN SUBROUTINE WXANAL, NUM='13/)
9002 FORMAT (/END OF SUBROUTINE WXA.NAL'/)
9G14 FORMAT (3X,I5,2F8.2)
14027 FORMAT (/' NUMBER OF HOURLY SURFACE REPORTS ='13/)

RETURN
END

SUBROUTINE XTREM (IG,DBUG)
c
c FINDS 5 LOWEST SF'C ELEVATIONS & GRID PT. WITH HIGHEST ELEVATION

LOGICAL DBUG(15)
DIMENSION ZLOWC5)

d COMMON/CSFC/SFCHT(25,25),SIGMA(6)
COMMON /LIMITS/NCOL,NROW,NLVL,NCOLM1,NROWM1,

$ LOWIX(5,3) ,LOWIY(5,3) ,SFCMAX
DO 10 1='1,5

ZLOW( I)=99999.
10 CONTINUE

SFCMAX=-999999.
DO 100 IY=1,NROW
DO 100 IX='l,NCOL

IF(SFCHT(IX,IY).LT.ZLOW(5)) THEN
DO 50 1=1,5

IFCSFCHT(IX,.IY).LT.ZLO)W(I)) THEN
IF(I.LT.5) THEN

DO 45 J=5,I*l,-1

LOWI(J=Z)LOW-1) ,IG

CONTINUE
END IF
ZLCW( I)=SFCHT(IX, IY)
LjWIX( I,IG)=IX
LODWIY( I, IG)=IY
GO TO 75

END IF
CONTINUE

END IF
IF(SFCHT(IX,IY).GT.SFCMAX) SFCMAX=SFCHT(IX,IY)

1jo CONTINUE
IF (DBUG(ll)) PRINT 6000, IG,(LOWIX(I,IG),LOWIY(I,IG),

$ ZLOW(l),1=1,5)
IF (DBIJG(11)) PRINT *,'HIGHEST ELEVATION=',SFCMAX

.,Juo FORMAT (lX,'IN XTREM, GRID=',I2,' LOWEST COL,ROW HTS',
$5(/,2I4,FB.1))
RETURN
END
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Appendix D

A REVIEW OF THE APPLICATION OF FRACTALS AND
RELATED CONCEPTS TO ATMOSPHERIC STUDIES

(with Bibliography)
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I INTRODUCTION

The intent of this appendix is to provide a review of some recent
developments in the mathematical description of the state of the atmos-
phere, and of atmospheric processes. The emphasis is on physical inter-
pretation of the mathematical concepts. Originally, the review was to
be limited to fractals and fractal dimension. The emphasis remains
there, but the concept of fractal dimension appears not only in connec-
tion with direct description of spatial and temporal distributions of
atmospheric parameters, but also as a descriptor of equations used to
describe atmospheric processes. It is in connection with the latter
application that the concept of "strange attractor" enters the picture.
This concept will be discussed, but not emphasized.

To date, most studies have focused on descriptive and interpreta-
tive applications of the concepts. Very little has been done toward
incorporating the concepts into atmospheric modeling. This is not

surprising because it is little more than a decade ago that the terms
"fractal" and "fractal dimension" were coined (Mandelbrot, 1975). This
neologism arose when it was recognized that what had appeared to be a
very abstract branch of mathematics could serve as an analog for many
natural phenomena. One of the natural phenomena to which the concept
seemed most applicable was atmospheric turbulence. With this relatively
short history, it is not surprising that the concepts have yet to be
incorporated into fluid flow modeling. I have attempted to go somewhat
beyond the usual bounds of a literature review and have made some tenta-

tive suggestions about how these new concepts might be incorporated into
the flow modeling process.

II BACKGROUND

A. "Unpredictable" Determinism

Lorenz (1963) observed:
"certain hydrodynamical systems exhibit steady-state flow
patterns, while others oscillate in a regular periodic
fashion. Still others vary in an irregular, seemingly hap-
hazard manner, and, even when observed for long periods of

time do not appear to repeat their previous history..."

"Lack of periodicity is very common in natural systems

and is one of the distinguishing features of turbulent flow.
Because instantaneous turbulent flow patterns are so irregu-

lar, attention is often confined to the statistics of turbu-
lence which, in contrast to details of turbulence, often
behave in a regular well-organized manner. The short-range
weather forecast, however, is forced willy-nilly to predict
the details of the large scale turbulent eddies--cyclones and
anticyclones--which continually arrange themselves into new

79

%



° patterns. Thus, there are occasions when more than the sta-

tistics of irregular flow are a very real concern."

Lorenz (1963) then went on to show that a system could be fully
deterministic in the sense that its state at one step fully determined

its state at the next step, but would still be essentially unpredictable
beyond a few steps, because of extreme sensitivity of the system to
initial conditions. Effectively, these sensitivities make it impossible
to specify the state of such a system sufficiently well that its future
state can be predicted. The Navier-Stokes equations are such a system.
By extension, those fluid systems such as the atmosphere that can be
described by the Navier-Stokes equations will be generally unpredictable

in their details and even in their major features beyond some limited
time in the future. The deterministic nature of the equations and
pictures of turbulent flows suggest that although future states of the

system are not predictable, they may not be wholly without order. Thus,
one is encouraged to seek descriptions of the system that do not obscure
the orde' and organization that is present. The concepts of fractal
dimension and strange attractors seem to provide improvements on conven-
tional statistical measures. They augment the statistical measures
rather than replace them.

B. Physical Space and Phase Space

In order to illustrate his point, Lorenz (1963) used a simple set
of equations to describe a particle trajectory governed by processes

closely related to those causing thermally driven convection. Those
equations are

X" = -aX + GY

Y" = -XZ + rX -Y

5I
Z' = XY -bZ (Il-i)

Here, ( )" represents a rate of change with respect to a dimensionless
time; X, Y and Z are locations and the other parameters are constants
that can be related to thermodynamic properties. The above set of
equations has come to be called the "Lorenz attractor." Lorenz (1963)
analyzes the properties of the equations to show that certain choices of
constant values and initial conditions lead to steady-state or periodic
trajectories. However, the most interesting cases are those that are
neither stationary nor periodic. He used numerical integration to study
the subspace in which such trajectories are ultimately confined.
Lorenz' analysis indicates that the trajectories become confined to a
convoluted surface that has zero volume. If the trajectories were
periodic (i.e. they passed more than once through the same point, and
because of the deterministic nature of the system, they repeated their

-passage through all subsequent points), then the solutions would be
confined to a closed, distorted curve that had neither volume nor area.
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The Lorenz trajectories will often tend to cluster around a limited
number of points, referred to as attractors. The trajectory may stay

for a number of steps in the vicinity of one of the attractors and then
make a relatively rapid leap into the domain of another, stay there for
awhile and then return. The nature of the trajectory-containing sur-
faces, and the factors that govern shifts from one attractor to another
are of considerable interest because of their relevance to our under-
standing of the solutions to these systems.

In the case of the Lorenz attractor, the motion of the point
described by the equations takes place in three-dimensional physical

space. The x, y, z coordinates and the u, v, w components of motion
could be considered to be descriptors of the "state" of the particle.
It is common to represent the state of a fluid system by the values of
relevant parameters (e.g. wind components, temperature) at a number of
grid points. Then, the evolution of the fluid flow can be considered as

a trajectory in this high-dimensional state (or phase) space. The
subspace occupied by the trajectory will generally be of lower topo-
logical dimension than the state space itself. The degree to which this
subspace fills the complete space is determined by the nature of the
equations. In many cases there will preferred regions of the phase
space, i.e. attractors.

At least intuitively, the above discussion suggests that it may be
possible to approximate fluid flows with fewer descriptors, and that
descriptions of the shapes of the subspaces containing the solutions

might provide a basis for statistical descriptions of the flow. Fractal
dimension, as will be discussed later, provides a measure of the degree
to which the phase space is filled by the solutions. It is this fact

that has provided one of the motivations for applying the concept of
fractal dimension to the study of turbulence. The hope prevails that
fractals will provide a means for deriving statistical properties of
turbulent fields, especially those associated with the observed inter-
mittency of most turbulence.

There are other reasons, based on physical arguments, for believing
that fractal concepts show promise for providing quantitative descrip-
tions of turbulent fields. These other reasons will be discussed later,

but it is worth noting here that the physically descriptive part of the
theory can be used directly to generate "realistic" distributions of
parameter values in physical space, e.g. the shapes of surfaces of
constant value (iso-surfaces) can be generated. Through appropriate

transformations, it is also possible to estimate fractal dimension from
a time series of parameter values at a single point.

This review emphasizes applications of fractals to distributions in
physical space, because the ultimate objective is to use the concepts to

The terms "state space" and "phase space" are both found in the literature,

but the latter seems more common.
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simulate small scale distributions from information contained in larger

scale distributions. In principle at least, there is potential for

providing a means of closure for the large scale fluid flow equations.

C. Statistical Descriptions

It is natural to invoke statistical descriptions when trying to
describe some deterministically unpredictable behavior. One of the more

common statistical descriptors of turbulent behavior is the probability

distribution associated with differences in parameter value over a
specified distance, i.e.

F(q,Ar) = Pr[Ac(Ar) > q] (11-2)

where Pr[r > s] is the probability that the argument inequality is true;

Ac(x) is the absolute value of the difference in c at two points sepa-
rated by a distance x. If the variable c is uniformly distributed, then

Ac will always be zero as will Pr[Ac > 0].

For many practical purposes, it is the tail of the distribution

that is of greatest interest. The tail involves the large, infrequent
fluctuations. The nature of the tail of the distribution will have
important effects on the higher moments of the probability function.

Probability distributions will vary according to the separation distance

between points. For example, it is natural to assume that the likeli-

hood of exceeding some specified difference value increases as the

separation between the points increases. The next section describes a
simple functional relationship between the probability distributions for
different separations that has been found to be applicable to many
natural phenomena.

D. Scaling

Qualitatively, the fluctuations in a field that is "scaling" look
the same regardless of magnification. That is, the large scale fluctua-
tions are qualitatively the same as the middle scale fluctuations

embedded within them. Those middle scale features are in turn similar
to the still smaller fluctuations superimposed upon them. For a scaling

field of the parameter c, this can be quantitatively defined as follows.

First,

Ac(Az) = c(zo + Az) - c(z o ) (11-3)

i.e. Ac is the change in c between z and z0 + Az. If the field is

scaling, then the relationship between the probability distributions for
the large scales and those for the smaller scales is defined as follows:

Pr[Ac(XAz) > q] = Pr[)XAc(Az) > q] (II-4)
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Scaling fields are fractals.

The potential importance of fractals arises from two facts. First,
many natural phenomenon have been found to be scaling over large ranges
of sizes. Second, the use of probability distributions to describe the
likelihood of observing specified differences in value has proven to be
a useful tool in the analysis of diffusing scalars and turbulence.

E. Relevance to Conventional Fluid Flow Modeling

Typically, numerical modeling of fluid flow involves processes that
will affect the larger scale features of the flow, but are too small to
be resolved by the grid that is used. Even the vortex methods (e.g.
Leonard, 1985) which provide more detail in areas with the most fine
structure face computational limitations that force approximations for
small scale features. In general, the problem is to define either the
small scale features, or their effects, in terms of those features that
are resolved by the modeling. Fractals have promise for providing
descriptions of small scale processes, but to date there does not seem
to have been any practical application described in the literature.
There have been methods cescribed for generating fields with the appro-
priate fractal dimension (e.g. Lovejoy and Mandelbrot, 1985). If fields
generated in this way were realistic they could presumably provide a
basis for developing empirical parameterizations. Another possible
avenue can be found in the spectral representations of scaling fields
(e.g. Pentland, 1984). In principle, scaling allows the spectral den-

*' sity functions to be extrapolated to higher wave numbers (smaller
scales), but it is not clear whether computationally efficient methods
can be developed for taking advantage of this, or whether the effects of
cross-product terms (those involving more than one parameter) can be
treated realistically.

III FRACTALS, TURBULENCE, AND PHYSICAL SPACE

A. Discussion of Fractal Dimension

1. Definitions and Hypotheses
4

This section will discuss isotropic fractals. Later, the concept
will be extended to the anisotropic case which seems more applicable to
processes in the atmosphere.

Schertzer and Lovejoy (1983) show that for many atmospheric proper-
ties (e.g. kinetic energy, the logarithm of the potential temperature),
the upper tail of the probability distribution discussed earlier falls
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off algebraically, rather than exponentially. That is, it can be
represented by:

Pr(Ac > q)= k Ac q-(

The above relationship means that the probability of a random fluctua-
tion Ac exceeding a fixed value q is proportional to that fixed value
raised to the -a power, i.e. q-a. The exponent, -a is a measure of theintermittency of the distribution.

We can examine how the moments behave as a function of a. Recall-
ing the definition of the rth moment, vr

Pr = f cr f(c)dc (111-2)
0

where f(c) is the probability density function, i.e. the derivative with
respect to c of the cumulative probability function discussed earlier.
When Pr(c > q) = kq- , f(c) is given by

f(c) = kac-(a+1 (111-3)

substituting the definition for the rth moment gives

1 r =kcf cral dc (111-4)

A consequence of this distribution is that there will be a problem
in defining moments higher than a. According to Schertzer and Lovejoy
(1983), the higher moments will diverge so that the experimental estima-
tion will increase without limit as the sample size increases.

There is an interesting conjecture that can be made in connection
with the divergence of the higher moments. I have not seen the follow-

ing line of reasoning spelled out in the literature, but it is relevant
to the feasibility of the higher order turbulent closure schemes that
are included in some fluid models. Higher order closure schemes require
a parameterization of cross-product terms whose order may be the same
as, or greater than the order at which the moments begin to diverge. It
seems reasonable to assume that if the "self-products" involved in
calculating the moments do not converge, there may be problems with the
convergence of the cross-products. As noted, this is purely a conjec-
ture, but it seems prudent to investigate it further before elaborate
higher-order turbulent closures are developed.

84

-'4%.. - %. o'. % % .. '% -- - % % ,%-, ,, - -. A'4'•. , ,, . ,, , 9-. ,.' ..- .1



2. Methods for Determining Fractal Dimension

Several different approaches have been developed for calculating
fractal dimension. One of these follows more or less directly from the
fact that fractal dimension is a measure of the space-filling properties
of a curve or a higher dimensional surface. Another approach estimates
the parameters of the probability distributions, which are directly
related to the fractal dimension. The fractal dimension can also be
derived from the spectral density function and one method is based on
this approach. Finally, it is possible to estimate the fractal dimen-
sion of the attractor for a given system from a time series at a single
point. The applicability of this latter method to fluid flow modeling

*' applications is not clear, but for the sake of completeness a brief
description of the approach is included.

a. Subcell counting methods

Mandelbrot (1975) used a discussion like that which follows to
define fractal dimension and its relation to the "space filling" con-
cept. If the distribution of some parameter is continuous, then there
are iso-surfaces containing all the points that have the same value. In
order to determine the fractal dimension of one of these iso-surfaces,

* we select a large cube in space that contains at least a part of that
surface. We then define the length of the side of that cube as an
external scale, L, and subdivide the cube into smaller cells with sides
of length, i. We then count the number of these smaller cells that
contain at least one point on the iso-surface. If our "surface" is a
straight line, then the number of small cells through which it passes
will be proportional to (L/) 1 . If the surface is a flat plane, then
the number of small c~lls through which it passes will be approximately
proportional to (L/) . Finally, if the distribution of the parameter
in space is such that every point has the same value, then the "iso-
surface" will be solid and the number of cells intercepted will be
proportional to (L/) : In all these examples, the exponent of the term
(LI) is simply the Euclidian dimension of the "surface."

The concept of dimension outlined in the preceding paragraph can be
extended to fractional dimensions, if we imagine a line with many
"wiggles", and with wiggles upon those wiggles and so on and on. In
such a case, the number of small cells (n) through which the line passes
will be approximated by

n = k (L/)D (111-5)

where D is a number larger than one, but less than two. Similarly, a
plane might have roughness elements with smaller roughness elements upon
them and so on, in that case, the exponent D would be larger than two
but less than three. The exponent D in these cases is analogous to the
Euclidian dimension, except that it need not be an integer. Mandelbrot
coined the term fractal (from "fractional dimension") for geometric
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shapes (lines, surfaces, etc.) that have this property. Fractals are

self-similar in that the fluctuations at a small scale are related to
those at a larger scale by a constant power of the scale ratio over a
wide range of scales. Lovejoy and Schertzer (1986) have pointed out

that there are good physical reasons for the exponent for vertically
oriented features to differ from that from those for the horizontal
features in the atmosphere. This will be discussed further in a subse-
quent section.

According to Greenside et al (1982), Takens (1981), suggested an
algorithm for computing fractal dimension based on Mandelbrot's (1975)
definition outlined above. Greenside et al (1982) concluded that this
approach was impractical for systems with dimensions greater than 2,
because of convergence problems. These findings do not seem to preclude

the use of the method for finding the fractal dimension for isopleths of
a scalar in a plane, although the convergence may be slow. The method
should probably not be applied to problems involving high-dimensional
phase spaces. When the definition is reduced to two dimensions, a

square and smaller squares replace the cube and subcubes, so it can be
used to examine isopleths of a scalar in a plane intersecting an iso-
surface.

The cell counting concept is reasonably direct, and easily applied
to an array of discrete numbers such as a digitized image. This makes

it particularly useful for the analysis of cloud photos, or backscatter
cross-sections through smoke plumes, as are obtained with mobile lidar

systems. Another potential application would be to digitized images of
the markers in laboratory turbulence experiments. One interesting
feature of the technique, as it is applied to smoke plume cross-sections
arises from the fact that the isopleths tend to be concentric (Ludwig
and Nitz, 1986), so the fractal dimension obtained for low-value iso-
pleths are applicable at the edges of the plume, while those for the
higher values will be characteristic of the center.

Personal experience has shown that one does not have complete
freedom in the choice of the area over which an algorithm based on the
cell counting method can be applied, especially in the case of arrays of
discrete values. The method uses linear regression to find the con-
stants for the logri.hmic form of Equation 111-5, i.e.

log(n) = log(k) + D log(L/). (111-6)

In practice, we want as many values of N as possible. For a discrete
array, each N must correspond to an integer value of (L/i). This means

that we must select the large squares so that they have a side length L
that has many divisors. For example, if we choose a large square whose
side L is a prime number of grid points, then we will only get two

points from which to calculate the regression constants in Equation
111-6. It turns out that a wide choice of values can be achieved by
judicious use of products of powers of two, three and five. Using this
approach, it is possible to limit the analysis to a region which
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encompasses that part of the image which is of interest, but does not
extend very far into background areas.

b. A Method Based on Spatial Variation Probability
Distributions

We have already noted that spatially varying fields are frequently
characterized by the probability distributions for the difference
between values at two points separated by a specified distance, and that
there is a functional relationship for the probability distributions for
different separation distances. Schertzer and Lovejoy (1983) presented
the following approach that makes use of these definitions to determine
fractal dimension. Starting with the definition of a fractal (scaling)
pattern, i.e.

Pr[Ac(AY) > q] = Pr[AHAc(Y) > q] (111-7)

As before, Ac(x) is a change in value of the variable c over the dis-
tance x. In practice, Y will generally be the smallest separation
between points in the available data set. Equation (111-7) can be used
to estimate the exponent H if one determines various quantile values as
a function of the separation distance (Y) and then determines the best
fit value for H.

If we accept the hypothesis of Schertzer and Lovejoy (1983) that
the upper tail of the distribution has a hyperbolic form for large q

Pr(Ac > q) = kq-a , (111-8)

then the constants H and a can be estimated from the data as the best
fit values for the following relationship--again, for large values of q:

Pr[Ac(XY) > q] = k AHq-a (111-9)

The steps necessary to apply this method are as follows:

(1) Determine XH and a at different separations for upper tail
percentiles less than a few percent.

(2) Determine the average value of a, providing that the indivi-
dual values of a are sufficiently similar.

(3) Find H by a log-linear regression of XH values.

The scaling parameter H is related to fractal dimension as follows

(Pentland, 1984):

D = 2 - H, (III-10)

Schertzer and Lovejoy (1983) analyzed distributions of several different
* atmospheric parameters by the above method and found that the data
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support the hypothesis of a hyperbolic upper tail for the probability
distribution. They also found that the data showed that the distri-
butions are anisotropic with vertical fractal dimensions that are dif-
ferent from those in the horizontal. The importance of this fact will

be discussed later.

c. Spectral Analysis Methods

The method described in the preceding section, based on the proba-
bilities of finding differences of a specified magnitude as a function
of separation distance, is closely related to the estimation of spatial
autocorrelation. Therefore, we might expect that there would be spec-
tral analysis methods that could be used to estimate fractal dimensions.
For a variable that satisfies the scaling relationship presented above,
the exponent of the corresponding power spectrum (-8) is related to the
scaling exponent H as follows:

B = 2H+l . (II-11)

Combining Equations III-10 and III-11 gives

a = 5 - 2D . (111-12)

Thus the power spectrum P(f) of a scaling field will be proportional to
f , where P is the spectral density as a function of wave number f.
This relationship can be used as the basis of a method for estimating
the fractal dimension of a field, where fast Fourier Transform (FFT)
methods are used to generate the amplitudes of the Fourier terms in wave
number space. The power spectrum is then fit without regard to direc-
tion. In essence, the procedure averages the amplitudes around circles
of constant wave number radius. If anisotropic effects are to be
included, the power spectra along different axes would be examined.
Pentland (1984) has shown that the spectral method can be applied to
fairly small subsections of an image. He used the method to charac-

terize the fractal dimensions of 16 x 16 pixel subsections of photo-
graphs. The fractal analysis provided a basis for distinguishing the

inhomogeneities in the areas of the picture that had similar texture.
The method is efficient because it uses FFT algorithms and simple linear
regression, but substantial changes would be needed to address aniso-
tropic effects.

d. Estimation of Fractal Dimensions from Time Series

As we noted earlier, the time evolution of some system can be fully
described by a trajectory in an n-dimensional phase space. Trajectories
for atmospheric systems are often contained within "surfaces" whose
dimension d is smaller than that of the complete phase space, i.e.
d < n. Measurements are more commonly available for a long period of
time at a few individual locations than at enough points to describe the
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state of the system. Therefore, it is be desirable to have a method
that can use time series data to estimate fractal dimension of the
surface containing the state trajectories. Fraedrich (1986) presents a
discussion of how this is done. This discussion and that of Packard et
al (1980) form the basis for the following description. If the dynamics
of the system are described by a set of n ordinary differential equa-
tions

x (x X, ... , xn); j 1, .. , n , (111-13)

then the phase space is described by the n coordinates xj, (j=1,
n). These are the dependent dynamical variables. The symbol (')

indicates differentiation with respect to time; the time evolution of
the system can be written as an n-dimensional vector function of time
[x1 (t), ..., Xn(t)], defining the trajectory in phase space. The dif-
ferential Equations (111-13) can be reduced to a single (albeit highly
nonlinear) differential equation involving only one of the variables, if
all the others are eliminated by differentiation. This nth order equa-
tion will be of the form

x(n) = fix, x', ... , x(n-1) ]  . (111-14)

This is equivalent to n equations describing the time series of the
variable x(t) and its first n-1 derivatives, x'(t), ... , xen- 1)(t). The
Equations (111-14) are equivalent to the original set of differential
Equations (111-13), but with the important difference that all the
variables can be determined from measurements at a single point -- if
the measurements have sufficient temporal resolution to obtain the
necessary higher-order derivatives.

According to Fraedrich (1986), if the dimension d of the attractor
contained within the original n-dimensional phase space is much less
than n, it can then be described in the new phase space made up from the
single variable and its derivatives. In fact, Fraedrich (1986) notes
that the dimensionality of the new phase space can be smaller than that
of the original phase space, i.e. one need not include all n-1 deriva-
tives. In fact, 2d+1 variables (i.e. the variable and its first 2d
derivatives should be sufficient).

In practice, one does not need to know the number of state vari-
ables in the original phase space, if sufficiently many derivatives are
included. Also, in practice the measurements are available at discrete
times, so that (2d-1) discrete time lag multiples are substituted for
continuous derivatives. In this new system, we deal with the following
vector

X(t) = [x(t), x(t+T), ..., x[t + (2d-I)T]} (111-15)

In order to ensure linear independence, the time shift T is chosen so
that autocorrelations vanish.
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Observed time series of a single variable describe trajectories in
this new phase space, so that one of the methods discussed earlier can
be used to determine the dimension of the structure formed by those
trajectories. Of course, one must know that dimension first to deter-
mine how many derivatives (time shifts) must be included in the calcula-
tions. It is desirable to minimize that number because the required
calculations increased dramatically with increasing numbers of dimen-
sions. Also, as noted before, the cell counting method may not be
appropriate for dimensions greater than two (Greenside et al, 1982).

Fraedrich (1986) uses an algorithm of Grassberger and Procaccia
(1983) that provides an estimate for the lower limit of the fractal
dimension. Fraedrich (1986) notes that in most of the cases that were

analyzed, this lower limit was very close to the actual value. In order
to circumvent the problems arising from a lack of foreknowledge about

the fractal dimension, Fraedrich (1986) calculates fractal dimension
using successively larger numbers of derivatives until he finds that the
calculated dimension no longer changes with an increase in the number of
dimensions in the phase space.

Obviously, methods based on time series from a single-point have
considerable practical advantage over those that must analyze data from
a multitude of individual points. Thus, this method deserves further

exploration with regard to its application to studies of turbulence,
including results obtained from numerical simulations, especially large
eddy simulations (LES). To date, it appears that the applications of

the technique have been much like those of Fraedrich (1986) and have
involved climatic and other variabilities on time scales much longer
than those appropriate to studies of turbulence and turbulent effects.

3. Generation of Fractal Fields with Specified Characteristics

One possible, practical use of the fractal concept would be to
develop parameterizations for estimating fractal characteristics from
large-scale flow parameters so that fields with the appropriate charac-
teristics could be generated and used for empirical characterization of
terms appearing in conventional closure schemes. This approach would
require a method for generating fields with the appropriate fractal
characteristics. This problem has been addressed, in large part because
of its relevance to the generation of realistic looking artificial
landscapes.

Probably the most efficient way of generating such fields is to use
the appropriate Fourier series, but that technique may not allow intro-
duction of randomness. Lovejoy and Mandelbrot (1985) describe a tech-
nique that they call the "fractal sums of pulses" (FSP) method for
generating rainfall intensity statistics that have the appropriate
fractal properties. In one dimension, i.e. a time series of rainfall
intensity, R(t), the FSP method works as follows. The function R(t) is
generated as a sum of randomly located rectangular pulses with random
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height (rainfall intensity) and duration. The random locations of the

centers are distributed according to a Poisson process with constant
rate, v. To ensure scaling, Lovejoy and Mandelbrot (1985) choose
Pr(p" > p) to be proportional to p ; p is the duration. Thus, the
probability of a random duration p' exceeding p is proportional p-1 .
The height of the rectangle (or rainfall intensity increment, AR) is
taken to be equal to ± (p')I/a They point out that for any given
duration p', the pulse intensity has a random sign, but a fixed absolute
value.

This one dimensional model scales with an exponent H=1/a. A change
in duration scale by a factor of A will change the intensity by a factor

of A1/a. The intensity probability distribution will be hyperbolic with
an exponent of a, because of the rainfall duration probability distribu-

tion and choice of relationships between rainfall duration and rainfall

intensity.

The pulses need not be rectangular, but can be smooth and continu-
ous if their length scales as A and the intensity scales as X1/a.

Lovejoy and Mandelbrot (1985) suggest a pulse shape with an amplitude AR
proportional to AR exp[-(u/p)2S], where u is the distance from the pulse
center. This arbitrary shape is convenient because the pulse is smooth
for small values of S, becoming more discontinuous (more nearly
rectangular pulses) as S becomes larger.

The method can be extended to more dimensions. For an isotropic
distribution in two dimensions, the simplest pulse is a randomly placed
right circular cylinder. The probability that the base area A of the

cylinder exceeds a specified value is inversely proportional to the
value, while cylinder height (intensity) equals ± A1 a. It is necessary
to define an intensity threshold and set values below that threshold to
zero when a positive field (e.g. rainfall) is represented.

Although the rain fields constructed by the above method have the
generally appropriate fractal properties, they tend to be sharp-edged

and produce too few separate rain areas. Lovejoy and Mandelbrot (1985)
go on to describe other models using pulses with annular bases and
elliptical annuli of varying eccentricity to simulate anisotropic
effects.

Medler et al (1986) have used some of the ideas presented by
Lovejoy and Mandelbrot to generate reasonably realistic images of smoke
plumes. However, it should be noted that their simulations are not
based on observed fractal properties. They have simply chosen fractal
properties to achieve a degree of visual realism in the images that they
produce. Lovejoy and his coworkers (e.g. Lovejoy and Schertzer, 1985,
1986; Lovejoy and Mandelbrot, 1985; Schertzer and Lovejoy, 1983) have
produced images that simulate clouds and precipitation areas using the
methods described above. Unlike Medler et al (1986), they have
attempted to use parameters based on observational evidence. They have
also attempted to include anisotropic effects.
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Although considerable progress has been made in producing scalar

fields that have fractal properties similar to those observed for
certain atmospheric variables, there are some very important problems
which do not yet appear to have been addressed. In particular, I have
found no reports where fractals have been used extend to some larger
scale description to smaller scales. Medler et al (1986) and Pentland
(personal communication, 1986) have superimposed fractal patterns on
general Gaussian plume concentration cross sections, but have not used
observed fractal parameters in the process. Furthermore, both
applications have been limited to isotropic fractals.

Another area where much remains to be done with fractals is vector
field simulation. This represents a formidable task, but is very impor-

tant because appropriate vector fields could serve as a basis for turbu-
lent closure or direct simulation of subscale eddy processes. Although
at least one method for estimating fractal dimension can be applied to
vector quantities (e.g. Pentland, 1984), it is not immediately obvious
how that definition can be used to generate vector fields with appropri-

ate fractal properties and statistical relationships between components.

B. Why Turbulence Might Be Expected to be Well Described by Fractals

To this point, the discussion has focused on definitions of frac-
tals and related concepts without giving serious attention to the physi-
cal reasons why they may be important in the study of turbulence and

turbulent diffusion of scalars. There are at least five kinds of evi-
dence which suggest the connection:

(1) The structure of turbulent eddies observed in flow visualiza-
tion experiments

(2) Similarity arguments from classical turbulence theory

(3) Detailed numerical flow simulations

(4 ) Characteristics of the governing equations, and

(5) detailed analysis of the spatial distribution of atmospheric

scalars.

These are discussed in the following sections.

1. Shear Layer Flow Visualization

Reynolds (1985) provides a qualitative discussion of the processes
and the structure in a turbulent mixing layer forming in the shear zone
between fluids flowing at different velocities. The structure evident

in Figure 1 occurs quite commonly. Although Reynolds does not mention
fractals, his discussion provides evidence of scaling and similarities
between the structure of the motion field on different scales. What
follows is based on the material presented by Reynolds (1985).
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Figure D-1 shows what happens in a mixing layer flow. Initially,
vorticity flows from the tip of the separator that is used to generate
the flow. An unstable 2-dimensional shear layer is formed. The insta-
bility can be excited by random noise or slight vibrations. Once
excited, it grows rapidly so that vorticity is quickly concentrated in
nearly discrete vortices, oriented generally perpendicular to the flow
direction, although they may include some irregularities. It is impor-
tant to note that not all the vorticity is concentrated in the major
features, but some remains in "braids" that connect the major vortices,
as shown in Figure D-1. As will become evident, this has important
consequences.

As noted above, there may be irregularities in the spacing or
orientation of the main vortices. Such irregularities can cause the
vortices to move at different velocities, so that they merge and their
size increases in the downstream direction. Figure D-2 (adapted from
Reynolds, 1985) shows schematically how this takes place. The regularly
spaced, uniform vortices at the left of the figure interact so that
induced motions (e.g. the motion of vortex C caused by vortex B) are
cancelled (e.g. by vortex D). Some of the * regularly spaced vortices
shown at the right of the figure will move up and others will move
down. Eventually some pairs move close together and orbit one another
or merge.

It is in the braids between the large scale vortices where the
evidence of fractal structure may be found. As noted before, some
vorticity remains in the braids to be stretched as the large scale
vortices "wind in" the fluid between them. Stretching intensifies the
vorticity in the braids, forming new vortices with axes aligned along
the principal strain direction as shown in Figure D-3. These vortices
undergo the same processes described above, but on a smaller scale and
with different orientation. One can expect that the new, smaller vor-
tices also contain irregularities that cause them to merge, and that new
I"minibraids" form and are stretched along new strain axes. These new
structures can undergo similar deformation on a still smaller scale, so
that the processes are likely to continue down to the scale of viscous
dissipation. Thus, qualitatively we would expect scaling and a similar-
ity of turbulent structure to extend over a wide range of scales, from
the outer scale defined by the large, merged vortices down to the scale
of molecular dissipation processes. It should be noted that analogous
reasoning can be applied to other flow types such as jets, boundary

* layers and wakes which are also characterized by regions of strong shear
and concentrated vorticity.

0,

2. Classical Theory

The term "classical theory" in this section's title refers to
Kolmogorov's early deductions concerning the cascade of energy through
the turbulent spectrum. However, the derivation that follows is taken
from Frisch et al (1978), because their discussion provides a somewhat
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FIGURE D-1 SCHEMAT1C DIAGRAM OF MIXING LAYER TURBULENT BEHAVIOR
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FIGURE D-2 SCHEMATIC DIAGRAM OF VORTEX INTERACTIONS
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more physical picture of the process. Similar arguments have also been
given by Lovejoy and Schertzer (1986). We begin by defining the energy
spectrum E(k) as the kinetic energy per unit mass per unit wave number
k. For purposes of argument, Frisch et al (1978) choose to define a
discrete spectrum of eddies beginning with the large scale to where the
energy is introduced and proceeding to successively smaller wave numbers
according to the relationship

Z= n o 2-n , n=0,1,2, ... , (111-16)

the corresponding wave numbers are

kn=I/in . (111-17)

The discretized kinetic energy per unit mass In the wave numbers near in
is given by

Pki
kn+ I

En= f E(k)dk . (111-18)

n

If the turbulence is statistically stationary, energy introduced at
large scales (t ) is transferred to successively smaller scales until

0
the dissipation scale Ed is reached. We can define a characteristic
velocity vn In terms of En for the kn eddies, i.e.

E - v 2 (111-19)n n

It should be noted that vn is not total velocity, but rather a velocity
difference characteristic of that particular eddy size in' With this in
mind, an eddy turnover time tn can be defined

t i n/Vn . (111-20)

Frisch et al (1978) go on to argue that in the inertial st brange--where
tn is much greater than the viscous dissipation time, in /v (v is the
kinematic viscosity), and much less than the characteristic time for the
larger scale motions, io/Vo--we can define an energy (per unit mass)
transfer rate from eddies of wave number kn to kn+I to be

cn - En/tn - vn /Z n (111-21)

If the process is stationary ashypothesized, then the energy dissipa-
tion rate En will be a constant E, and we can now solve for vn and En:

v- ( 1/3 (111-22)
n n

E n  E ( n)23 (111-23)W

97

% %. % 1 , % .P .. 
%



Equations (111-22) and (111-23) are the same as Kolmogorov's result for
the structure functions. A Fourier transformation provides the wave
number spectrum

E(k) - 2/3k (III-24)

We can also obtain the eddy turnover time

- -/ 3 2 /
t - C /3 n2/3  (111-25)

The above results can be rewritten to show their scaling properties
more clearly. For example from Equation (111-22)

E - /2/3 2/3  - 2/3 £o2/3 (tn/to)2/3 (111-26)

En - E[(Ln/1o ) 1 o - Eo (In/i o )2/3 (111-27)

Thus, the energy per unit mass per unit volume scales according to
(U/to)2/3. There is a tacit, but very important assumption in the above
relationship, i.e. all eddy sizes are assumed to be spread more-or-less
uniformly throughout the same volume.

For greater generality, Frisch et al. (1978) assume that the
smaller eddies are less space filling than the larger ones. Certainly,
the qualitative behavior of mixing layer turbulence described in the
preceding section makes such an assumption plausible. This assumption
requires that we introduce a new parameter to characterize the degree to
which the cascade is space filling. If the whole volume is filled by
eddies of all sizes, then the cascade we have been discussing (where
n - £-n) has 23 times as many eddies of size In+I as it has of size
n o ~
in' That is, it takes eight eddies of dimension L/2 to fill the volume
occupied by one of dimension E. Frisch et al (1978) define 8 to be the
ratio of the average number of in+ eddies produced by each in eddy and
the maximum possible, i.e. eight. If eddies of size to are space fill-
ing, then eddies of size in will fill only a fraction Bn of the total
space

an - an = (N/2
3 )n (111-28)

where N is the average number of eddies formed by each eddy of the
preceding generation; N 8.

Frisch et al (1978) assume that the eddies of the (n+l)th genera-
tion are positionally correlated with those of the nth generation by
embedding or attachment. This seems to mean that they believe that the
smaller eddies are produced in the same general area as the larger eddy
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from which they arise. The discussion of mixing layer turbulence given
in the preceeding section suggests that the "positional correlation" is
more likely to be one of "attachment" than "embedding." Frisch et al
(1978) are assuming that the region where an eddy is formed becomes an
"active region" for the cascade to smaller sizes. There seems to be one
other tacit assumption in the arguments of Frisch et al (1978) that they
do not explicitly state. It appears that they assume that the average
number of eddies formed, N, does not vary systematically according to
eddy size.

Frisch et al (1978) redefine the typical velocity difference vn in
terms of active regions only, so that the kinetic energy per unit mass
associated with scales on the order of in is given by

2
En - B v 2 . (111-29)

The characteristic time for energy transfer from in-scale eddies to
smaller scales remains the same, i.e. tn = in/vn, assuming that the

*. production of eddies of the next smaller scale arises from the internal
dynamics of the larger eddies producing them. This seems reasonable in
light of the mixing layer discussion given earlier, because smaller
scale eddy generation depends on the stretching of the braids caused by
the "winding up" in the larger eddies.

If, as before, we assume a steady-state condition so that the rate
of energy transfer is independent of scale over the inertial range, i.e.

cn En/tn ~ n v/1n - E , (111-30)

then, the following relationships are obtained

vn - -1/3 1 3  (i /1)(3-D)/3 (111-31)Vn n n on

tn - --1/3 £12/3 (1n/Z)(3-D)/3 , (111-32)

En 2/3 2/3 (no)(3-D)/3 (I-3
E n - -2/3 n (i n/i o (111-33)

and

E(k) k2/3 (ki0 (111-34)

In the above expressions, D is defined by N=2D. The scaling nature of
the relationships becomes evident if we rewrite Equation (111-33)

(5 (SD 5 D
2/)/ 3 3 3 3) (111-35)

no 0 o n o n
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This is the Kolmogorov result, but with a correction of D/3 in the
exponent to account for intermittency in the energy transfer to smaller
scales. Finally, the relationship among N,B and D is:

Sn - (N/2
3)n = (2 D3)

n  . (111-36)

The above derivation demonstrates the scaling properties of impor-
tant turbulent parameters. It also relates them to classical theory and
some of the observed physical factors that lead to intermittency. In
the process, the fractal dimension is introduced to describe the space-
filling properties of the "surfaces" within which transfers of energy
from larger to smaller scales take place.

U"

It should be noted that there is a scale at which the viscous
dissipation takes place, and it is different from that given by
Kolmogorov. The outer scale where energy is introduced to the cascade

remains the same, and defines C - v0 /1. At the other end, we can

still define the scale at which the viscous dissipation takes place by
21/3 2 (/3 (3-D)/3

equating turnover time, t n - n (2 /Z o to the viscous

diffusion time, Z2 /v. Solving givesn

2d o (1/3 )4/3/+D) (III-37)

Thus, when the intermittency effects are included, the dissipation scale

id will differ from the Kolmogorov microscale (V 3C)I/ They are equal
only when D = 3, i.e for the space-filling case.

3. Numerical Simulation of Small Scale Structure

Most fluid simulations parameterize turbulent effects and so pro-
vide little evidence for any fractal structures related to turbulence.
However, Chorin (1982) performed a very interesting numerical experiment
that bears a close relationship to the formation of vortices in the
braids between eddies that was discussed earlier. Chorin (1982) con-
sidered a straight vortex with a single perturbation, embedded in a 3-
dimensionally periodic domain. The initial vortex ran from the center
of the bottom of the box to the center of the top, with a jog like that
showed schematically in Figure D-4. Thus, he began with a perturbation
on a structure very much like the vortex filaments in the braids.

Chorin (1982) used a vortex element simulation technique, much like
those described by Leonard (1985). The overall structure was simulated
by a number of straight vortex tube segments. After the simulation
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began, the vorticity stretched very rapidly and increased the number of
segments that were required to approximate the distorted vortex tube.
The rapid increase in the required number of vortex elements limited the
time that the calculations could be continued. Figure D-5 shows the
general configuration after 10, 20, 30, and 40 time steps, corresponding
to elapsed times of 0.65, 0.88, 1.04, and 1.21, respectively. Presum-
ably, though not stated, the units are seconds.

Figure D-5 shows that the general orientation of the pattern
remains vertical while becoming very complex. Chorin (1982) evaluated
the Hausdorff (fractal) dimension of the structure in Figure D-5 and
found it to be on the order of 2.5. This is consistent with values
suggested by Mandelbrot (1977) for the fractal dimension of turbulent
structures.

4. The Navier-Stokes Equations

The three preceding sections show that there is a wide variety of
evidence to suggest the general applicability of fractal concepts to the
description of turbulence. Before proceeding to discuss some evidence
gathered from atmospheric observations, it is worth noting that solution
spaces for the Navier-Stokes equations are widely believed to be
fractals as well. The focus of this review is not on that aspect of the
problem, so it will not be reviewed in detail.

Lorenz (1963) devised a set of very simple differential equations
whose trajectories in state space are contained in convoluted surfaces
that seem to have many of the same characteristics that we have been
describing. Furthermore, this system, which has come to be called the
"Lorenz attractor" is closely related to fluid dynamic equations for
convective motions in a heated fluid. Lorenz chose this system because
it is simple to solve and related to more general fluid dynamic systems,
such as those described by the Navier-Stokes equations.

It seems to be generally presumed that the more complicated systems
(and nature itself) behave in a fashion which is at least qualitatively
similar to Lorenz' (1963) simple system, which was later extended to a
somewhat more realistic set of ordinary differential equations derived
from the shallow-water equations with bottom topography (Lorenz, 1980).
In that latter paper, Lorenz concludes with some remarks about the
importance of attractors and strange attractors to fluid dynamics.
Lorenz states,

"The attractor set of a dynamical system is for practical purposes
the set of points in phase space which will continue to be encoun-
tered by an arbitrary orbit after an arbitrarily long time has
passed. For a large class of forced dissipative systems the
attractor has zero volume, i.e., an arbitrarily selected point in
phase space is almost always not on the attractor. When the
general solution is aperiodic, the attractor is strange."
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Lorenz (1980) then goes on to discuss the degree to which the attractors
of simpler equation sets approximate the strange attractors of a com-
plete set. He speculates that the attractor of a global circulation
model with 100,000 variables would be strange, but would have many fewer
dimensions than the entire phase space, perhaps as few as several hun-
dred dimensions.

The connection between fractals and strange attractors takes place
in phase space. Mandelbrot (1983) contends "that for most purposes an
attractor is strange when it is a fractal." According to Frisch (1980)
one shortcoming of the strange attractor approaches is that they seem
capable of describing only temporal chaos, but not the commonly observed
chaotic spatial structure especially at small scales. He suggests that
this shortcoming may arise from the phase limited spaces used in most
studies, which represent the system on a coarse grid, or with limited
spatial Fourier modes. It appears likely at this time that a focus on
fractals in geometric space, rather the fractal nature of the strange
attractors of fluid systems in phase space, will prove more fruitful for
practical applications.

5. Observational Evidence

Procaccia (1984) gives a review of how fractal structures and
turbulence might affect turbulent diffusion, fluctuations of passive
scalars, electromagnetic wave propagation and the perimeters of clouds

in the atmosphere. He examines two particle (relative) turbulent diffu-

sion. He considers two particles (at r and r2 ) and the behavior of the

1 2
separation distance R = rl-r 2 produced by their relative velocity i.e.

t

for isotropic turbulence <V (t)> = 0 so that the ensemble average sepa-

ration (represented by angle brackets, < >) is constant and equal to the
initial separation, but the variance, <R2> changes:

td 2- <R2> = 2 f < (t)-V(T)> dT (111-39)

The above equation requires estimation of a time correlation function
for velocity difference over a length scale R. Procaccia (1984) asserts

that although the correlation <V(t)-V(T)> is nonstationary, there is
some function of scaled time variables g(x) such that

<V(t).+(T)>= <V(t).V(t)> g[(t-T)/t ] (III-40)
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where tR is the typical decay time for velocity differences over a
length scale R. Substituting in Equation (111-39) provides asymptotic
predictions

S<V(t).+V(t)>t t<<t R
t~R

d <R2 >

I<V(t ).+V(t)>t R  t>>t

R

at extreme times. When R is in the inertial range, the diffusivity
d<R2 >/dt can be determined from <V(t).V(t)> , which is relatively easy

to determine. For the "homogeneous fractal model" of turbulence
described earlier,

<(t).( <>2/3 R2 3 (R/ )ID/3 (III-42)

where % is the outer scale of the turbulence and tR is taken to be the
ratio o? the separation distance R to a typical velocity difference over

that separation distance. Hentschel and Procaccia (1983) used the above
assumption to derive the following expressions for d<R2 >/dt

d <R2 - /3 C43 (R/i) 1/2-D/6 t<<t (III-43a)dt r

d 2 1/3 4/3 2-2D/3
- <R2> < >/ R4 (R/i ) 3 t>>t (III-43b).dt o r

Where R is the root-mean-square of the separation. For space filling
turbulence, where D=3, the above expressions reduce to the classical
"14/3 law".

Hentschel and Procaccia (1983a) examined data on 2-point diffusion
published by Richardson (1926) and Gifford (1957). Their results from

the Gifford data give an estimate for D between 2.5 and 2.75. The
Richardson data give estimates that correspond to a value of D between
2.64 and 2.78. Hentschel and Procaccia (1983) concluded that these
values were reasonable and supported tne "fractally homogeneous turbu-

lence" concept. It should be noted that they did not exhaust the avail-
able data and that further tests are possible. For example, Gifford
(1977) identified 21 sources of relative diffusion data.

Procaccia (1984) also discusses Lovejoy's studies of the fractal
properties of perimeters of clouds and rain areas. Lovejoy (1982) foundthat the perimeter P of a cloud is related to the cloud area, A, by

P - (A) D/2  (111-44)
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where D = 1.35 ±0.05. Procaccia argues that D is the fractal dimension
of the perimeter, and that the fractal dimension of the cloud surface
D = 1+D, or 2.35 ±0.05, (in the isotropic case).
c

Lovejoy's (1982) results represented a range of six orders of
magnitude in cloud area -- from about I kilometer to 1000 kilometers in
length. Hentschel and Procaccia (1984 ), argue that the perimeter of the
cloud is on a surface where some scalar is constant. Lovejoy (1982)
defines the boundary according to its temperature. Procaccia (1984)
considers a surface defining the outer boundary of the cloud, and how
that surface is distorted by turbulent diffusion. He then relates the
fractal dimension of the resulting surface to that associated with rate
of change of separation variance, d<R >/dt. Expressed in terms of the
fractal dimension of the cloud perimeter, D the relationship is (from
Procaccia, 1984:

5 = (11-D)/6 (III-45)

where D is the fractal dimension of the turbulence. Using the values
for D, that Hentschel and Procaccia (1983) derived from Gifford's (1957)
data gives a value of D of about 1.4 which is certainly in reasonable
agreement with the value of D = 1.35 ±0.05.

From the standpoint of fluid flow modeling, one of the more inter-
esting aspects of Hentschel and Procaccia's (1983, 1984; Procaccia,
1984) analysis is the link it provides between scalar distributions and
the properties of the turbulent field. They made the connection via
cloud perimeters, but there are other possibilities that deserve explor-
ation. For example, the distribution of smokes, dyes or metal flakes in
flow visualization experiments might be analyzed for fractal dimension
and used to estimate turbulent properties. Ludwig (1986) has been
attempting to estimate fractal dimension from lidar observations of
backscatter in vertical cross sections through smoke plumes. No attempt
has been made to determine turbulent properties, but that seems to be
the logical next step.

D. Recent Developments in Atmospheric Applications

To this point, the discussion has centered on isotropic turbulence
and its effects. However, horizontal scales of atmospheric motion
extend to larger dimensions than do vertical scales, which suggests that
any derivations that depend on isotropic turbulence should not be used
throughout the atmosphere, at least without modification. Recent work
by Lovejoy and Schertzer (1986) and Schertzer and Lovejoy (1985) has
provided the basis for necessary modification. They note the following
important facts regarding mesoscale processes:

(1) The energy spectrum is scaling (i.e. it is of the form k-Bh
where k is wave number and Bh is the appropriate value for

wave numbers in the horizontal plane, ah - 5/3).
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(2) The energy spectrum for wave numbers in the vertical plane is

also scaling, but anisotropy makes the relevant exponent, 8v'
quite different; 8h - 11/5.

(3) There is extreme variability, because active regions that
account for most of the energy and moisture flux are very
sparsely distributed.

Lovejoy and Schertzer (1986) present most of the concepts related
to isotropic turbulence that have already been discussed and then extend
those concepts to the anisotropic case. They make the extension by

continuing to assume that there is a constant energy flux over the range
of scales of interest, and that there are rules for describing how the
statistical properties of eddies are transformed from one scale to
another. In dealing with anisotropic eddies, their shape must be

characterized along with their dimensions. Schertzer and Lovejoy choose

to represent the anisotropic cascade in a manner very similar to that
discussed earlier for the isotropic case, except that horizontal and
vertical scaling are considered separately, i.e.

Hh

Pr[Ac(AAx) > q] = Pr[A hA(Ax) > q] (III-45a)

Hh

Pr[Ac(AAy) > q] = Pr[A hA(Ay) > q] (III-45b)

H

Pr[Ac(XAz) > q] - Pr[A v Ac(Az) > q] (III-45c)

4'Equations (111-45) can be written in matrix form:

*Hh +

Pr[Ac(TAr) > q] = Pr[A Ac(A+r) > q], (111-46)

The matrix T is given by:

TI 0 A 0 (111-47)
H

0 0 AzL i
where

Hz =H/Hh , (111-48)
v hh

and
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Ar Ay (111-49)

AZ

The matrix T produces a magnification overall, with stretching in
the z direction; it transforms the probability distributions and intro-
duces an elliptical geometry to account for the different horizontal and
vertical scalings. Figure D-6 shows the how the magnification and
stretching relates the small, vertically oriented eddies to the a large,
horizontally oriented eddy. The transformation changes the volume of
the eddy by a factor X2 XMz = ADel, where the "elliptical dimension"

Del - 2 + Hz.  In an isotropic atmosphere, Hz = 1, and therefore the
elliptical dimension equals 3. For 2-dimensionally isotropic turbulence
Hz = 0 and Del = 2. By analogy with the purely homogeneous case,
Schertzer and Lovejoy (1985) regard Del as a fractal dimension for the
anisotropic space. Schertzer and Lovejoy (1985) show that the number of

L: eddies of horizontal scale t is proportional to EDel.

The reason for introducing the modification described above is
apparent in Figure D-6; it provides a smooth transition from the very
large, horizontally oriented, "Hadley-like" cells down to the vertically
oriented convective cells. There is some scale where the eddies are--at
least in the statistical sense--spherical. Lovejoy and Schertzer (1985)
refer to this as the "sphero-scale." They contend that it is quite
variable because it depends on both the average turbulent energy flux
E and the average flux of buoyant force variance.

The dependence on buoyant force flux variance arises, according to

Schertzer and Lovejoy (1985) because the vertical structure is governed

by that factor, analogous to the flux of kinetic energy E. The flux of
the buoyant force variance D is given by

O(Az) = T 1(Az) Af2 (Az) (111-50)

where t(Az) is a characteristic time for the transfer process, and f is
the buoyant force per unit mass. It follows from dimensional analysis
that:

Pr[Av(Az) > q] = Pr{[(Az)]I /5 Az3 / 5 > q} (111-51)

According to Schertzer and Lovejoy (1985), the above scaling holds in
the vertical, while the Kolmogorov scaling governs the horizontal, i.e.

Pr[Av(Ax) > q] = Pr{[E(Ax)] I /3 AX1/ 3 > q) (111-52)

The probability distributions for the two Av's can be equated (after
cubing) to give

3/5 9/5
Pr(EAx > q) = Pr( /  AZ > q) (111-53)
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Source: Lovejoy and Schertzer (1986)

FIGURE D-6 SCHEMATIC DIAGRAM ILLUSTRATING LOVEJOY AND SCHERTZER'S
CONCEPT OF THE CASCADE FROM LARGE TO SMALL SCALES

109

%-



to provide an algebraic relationship between the buoyant force variance
and eddy kinetic energy fluxes. For the case with hyperbolic upper
tails of the probability distributions, and exponents a and a for the
turbulent energy and buoyant force variance fluxes respectively,
Schertzer and Lovejoy (1985) show that a - 5a /3

SOne of the more important consequences of Schertzer and Lovejoy's
(1985) analysis is that it provides a bridge between the large and small
scales of motion. It does not require a distinction between large scale
motions which are essentially 2-dimensional, and small motions which are
more 3-dimensional. They contend that there is no evidence (although it
has been sought) for any transition from 2-dimensional to 3-dimensional
regimes. It should be noted that their hypothesis is not necessarily
relevant only to the atmosphere, but may also be relevant to other fluid
systems where there are vastly different horizontal and vertical scales,
and where vertical motions are largely the product of buoyancy effects.

IV APPLICATION TO CLOSURE SCHEMES AND FLOW MODELING

It is beyond the scope of this review to develop a turbulent clo-
sure scheme for flow modeling based on fractal concepts. The literature

does contain some tantalizing results that appear to have the potential
to solve some of closure problems. However, the whole history of turbu-
lence modeling is characterized by promising approaches that have just
one essential item beyond grasp. In essence, the problem is to deter-
mine local covariances between important hydrodynamic variables (e.g.
velocity components, temperature, pressure, diffusing scalar concentra-
tions and so forth) for volumes that are representative the model's grid
dimensions. Determination of these covariances must not require infor-
mation that is not generated by the model for the larger scales (i.e. it
must use data available at the grid points).

The first thing that is apparent from a review of the fractal
literature is that it should be possible to generate scalar and vector
fields that have realistic statistical properties. However, this does
not by itself solve the closure problem. Two more major requirements
remain:

(1) it must be possible to infer the fractal characteristics of
those smaller scale distributions from the information at
model grid points.

(2) The determination of covariances between different quantities
(especially anisotropic covariance) requires both that the
statistics of the variable distributions in space be realis-
tic, and that their mutual distributions be correctly related.
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Is there anything in the literature that suggests that the above
problems can be resolved? Until the last two or three years, the answer
would have been no. However, the contention by Schertzer and Lovejoy
(1985) that there is a continuous cascade from the synoptic atmospheric
scales down to the viscous scale, and that the statistical properties of
that cascade can be described using the concept of elliptical fractal
dimension suggests that it should be possible effect a transition from
the grid scale to smaller scales. Furthermore, the relationships among
elliptical fractal dimension, turbulent energy flux and the flux of
buoyant force variance involve major hydrodynamic variables, which gives
hope that any subgrid scale fields that might be generated would have
the appropriate interrelationships among velocity, temperature, pres-
sure, and so forth.

The work of Hentschel and Procaccia (1983) attempts to relate the
fractal properties of diffusing scalars to the fractal dimension of the
turbulence. That work might also provide the link necessary to obtain
the covariances. Certainly, it has the potential to help in the design
of useful experimental studies, because it should considerably easier to
measure small scale distributions of a scalar in space than to measure
the distributions of velocity fluctuations.

The intermittency of turbulence means that on all scales there are
"active" and "inactive" regions. It seems reasonable to presume that
subgrid scale effects in regions that are active on scales resolved by
the model will be different from those in areas which are inactive. We
might also expect that the processes occuring in active regions will
smooth out fluctuations, so that those regions become less active. The
smaller velocity fluctuations characteristic of the inactive regions may
allow the development of gradients that will in turn lead to greater
fluctuations and cause the region to eventually become "active."
Regardless of whether or not this conjecture is true, it is clear that
any model should be able to deal with time variations of intermittency
in the turbulent fields.

Two major components will be required for any closure scheme
derived from fractal concepts. They are:

(1) A method for deriving fractal characteristics and identifying
"active" areas from information at the model gridpoints.

(2) A method for determining the necessary covariance terms from
the fractal characteristics, either analytically or through
parameterization of numerical "experiments" using artificially
generated fields based on specified fractal characteristics.

There are major unsolved problems associated with both the above
components. Determining fractal characteristics requires calculations

- of spatial correlations over a wide range of scales. Furthermore,
anisotropy requires that the correlations in the vertical and horizontal
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planes be determined separately. The limited number of gridpoints

available in most modeling may make this unreliable or impossible. This
may not be as severe a problem as it first appears, because the litera-
ture provides, through theory or observation, estimated values for many
of the scaling exponents and probability distribution parameters. It is
encouraging to note that the parameters of interest in turbulence model-

Sing such as turbulent kinetic energy, buoyant flux variance, velocity
fluctuations, and so forth have generally been the focus of the studies
reviewed here. Thus, the most severe problems may be limited to the
determination of the degree of turbulent activity in an area which could
be a much simpler task.

One final problem remains. Most of the derivations and analyses do
not consider boundaries like the earth's surface or the basin and air-
water interfaces of water bodies. This may limit the usefulness of much
published information, at least in the vicinity of the boundaries.

V CONCLUDING REMARKS

It is clear that a great deal of effort will be required to exploit
whatever potential there is for application of fractal concepts to the
modeling of turbulence. Other fractal applications are much easier and

have in fact been accomplished. Visual simulation of cloud and smoke
plume appearance has been done (e.g. Medler et al, 1986; Lovejoy and
Schertzer, 1986). It is a fairly easy step from there to the determina-
tion of concentration probability distributions, effects on optical
transmission and so forth. Of course, it requires that the fractal
characteristics of the temperature field, the diffusing smoke cloud or
whatever scalar is of interest be known, but this should be experiment-
ally determinable. In the case of atmospheric cloud formations and
precipitation areas the fractal properties have been determined. The
information is already at hand for solving many practical problems such
as those related to scintillation and other optical transmission
effects, and those related to variations in the visibility through
fog.

The fact that Schertzer and Lovejoy (1986) have made connections

between buoyant flux variance and turbulent kinetic energy lends cre-
dence to the notion that one can use fractal concepts to model correla-
tion functions as well as variance of a single variable. It is of
course the correlation functions which are the key to the modeling of
turbulent effects in fluid flow.

Even the problem of boundaries may be tractable. According to
Mandelbrot (1983) natural surfaces assume fractal shapes. It, there-
fore, seems plausible that air motions above such a surface would assume
fractal properties. There remains of course the problem of transition
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between those motions where the surface plays an important role and
those aloft were the variations are introduced by turbulent kinetic
energy cascades and buoyancy forces. Even if fractal concepts could
only provide turbulence models in the free fluid, away from boundaries,
that would be a major contribution.

11

113 "

... :'. %-. j. ' .'.'_...'.. %..'.,. *'..:%.. . .•% " ., . .'..% ,



BIBLIOGRAPHY*

Adrian, R. J., 1979: "Conditional Eddies in Isotropic Turbulence,"
Phys. Fluids, 22, 2065-2070.

Aizawa, J., C. Murakami, and T. Kohyama, 1984: "Statistical Mechanics
of Intermittent Chaos," Prog. of Theor. Phys. Suppl., 79, 96-124.

Anselmet, F., Y. Gagne, E. J. Hopfinger, and R. A. Antonia, 1984:
"High-Order Velocity Structure Functions in Turbulent Shear Flows,"
J. Fluid Mech., 140, 63-89.

Antonia, R. A., B. R. Satyaprakash, and A. J. Chambers, 1982: "Reynolds
Number Dependence of Velocity Structure Functions in Turbulent
Shear Flows," Phys. Fluids, 25, 29-37.

Antonia, R. A., B. R. Satyaprakash, and A. K. M. F. Hussain, 1982:
"Statistics of Fine-Scale Velocity in Turbulent Plane and Circular
Jets," J. Fluid Mech., 119, 55-89.

Basdevant, C., B. Legras, R. Sadourny, and M. Beland, 1981: "A Study of
Barotropic Model Flows: Intermittency, Waves and Predictability,"
J. Atmos. Sci., 38, 2305-2326.

Benzi, R., G. Paladin, G. Parisi, and A. Vulpiani, 1984: "On The Multi-
fractal Nature of Fully Developed Turbulence and Chaotic Systems,"
J. Phys. A: Math. Gen., 17, 3521-3531.

Benzi, R. and A. Vulpiani, 1980: "Small-Scale Intermittency of Turbu-
lent Flows," J. Phys. A: Math. Gen., 13, 3319-3324.

Bernard, P. S., 1983: "Kinematics of Velocity and Vorticity Correla-
tions in Turbulent Flow," Phys. Fluids, 26, 2080-2087.

Bradshaw, P., 1978: "Introduction (to Physical Processes that Govern
Turbulence)," Chapter 1, Topics in Appl. Phys., 12, 1-44.

Cederwall, R. T., 1983: "Review of Algebraic Stress Models for Simula-
ting Atmospheric Turbulence in a Three-Dimensional Sea-Breeze
Model," Final Report, Stanford University Civil Eng. 399, 20 pp.

Champagne, F. H., 1978: "The Fine-Scale Structure of the Turbulent
Velocity Field," J. Fluid Mech., 86, 67-108.

Not all the references in this bibliography were cited in tne review.

114

-...% %" P2 P2 . ' .



Chatwin, P. C., 1982: "The Use of Statistics in Describing and Predic-
ting the Effects of Dispersing Gas Clouds," J. Hazard. Mat., 6,
213-230.

Chatwin, E. C. and P. J. Sullivan, 1979: "The Relative Diffusion of a
Cloud of Passive Contaminant in Incompressible Turbulent Flow," J.
Fluid Mech., 91, 337-355.

Chatwin, P. C. and P. J. Sullivan, 1979: "Measurements of Concentration
Fluctuations in Relative Turbulent Diffusion," J. Fluid Mech., 94,
83-101.

Chatwin, P. C. and P. J. Sullivan, 1979: "An Interpretation of Some
Turbulent Diffusion Measurements," Proc. 7th Canadian Congress of
Appl. Mech., 657-658.

Chatwin, P. C. and P. J. Sullivan, 1979: "The Basic Structure of Clouds
of Diffusing Contaminant," Mathematical Modeling of Turbulent
Diffusion in the Environment, Academic Press, London, 3-32.

Chatwin, P. C. and P.J. Sullivan, 1979: "The Core-Bulk Structure
Associated with Diffusing Clouds," Turbulent Shear Flows 2,
Springer Verlag, Berlin, 379-389.

Chatwin, P. C. and P. J. Sullivan, 1980: "Some Turbulent Diffusion
Invariants," J. Fluid Mech., 97, 405-416.

Chorin, A. J., 1973: "Numerical Study of Slightly Viscous Flow," J.
Fluid Mech., 57, 785-796.

Chorin, A. J., 1982: "The Evolution of a Turbulent Vortex," Commun.
Math. Phys., 83, 517-535.

Constantin, P., C. Foias, and 0. P. Manley, 1985: "Determining Modes
and Fractal Dimension of Turbulent Flows," J. Fluid Mech., 150,
427-440.

Csanady, G. T., 1967: "Concentration Fluctuations in Turbulent Diffu-
sion," J. Atmos. Sci., 24, 21-28.

Domaradzki, J. A. and G. L. Mellor, 1984: "A Simple Turbulence Closure
Hypothesis for the Triple-Velocity Correlation Functions in Homo-geneous Isotropic Turbulence," J. Fluid Mech., 140, 45-61.

Eckmann, J. P., 1981: "Roads to Turbulence in Dissipative Dynamical
Systems," Rev. Modern Phys., 53, 643-654.

Endlich, R. M., R. C. Singleton, and J. W. Kaufman, 1969: "Spectral
Analysis of Detailed Vertical Wind Speed Profiles," J. Atmos. Sci.,
26, 1030-1041.

115

%U



Fackrell, J. E. and A. G. Robins, 1981: "The Effects of Source Size on
Concentration Fluctuations in Plumes," Bound. Lay. Meteorol., 22,
335-350.

Fraedrich, K., 1986: "Estimating the Dimensions of Weather and Climate
Attractors," J. Atmos. Sci., 43, 419-432.

Frisch, U, 1980: "Fully Developed Turbulence and Intermittency," NY
Acad. Sci. Ann., 357, 359-367.

Frisch, U., P.-L. Sulem, and M. Nelkin, 1978: "A Simple Dynamical Model
of Intermittent Fully Developed Turbulence," J. Fluid Mech., 87,
719-736.

Froehling, H., J. P. Crutchfield, D. Farmer, N. H. Packard, and R. Shaw,
1981: "On Determining the Dimension of Chaotic Flows," Physica,
3D, 605-617.

Gardner, M. 1978: "White and Brown Music, Fractal Curves and One-Over-f
Fluctuations," Sci. Amer., 238(4), 16-32.

Gent, P. R. and J. C. McWilliams, 1982: "Intermediate Model Solutions
to the Lorenz Equations: Strange Attractors and Other Phenomena,"
J. Atmos. Sci., 39, 3-13.

Gifford, F., Jr., 1957: "Relative Atmospheric Diffusion of Smoke
Puffs," J. Meteorol., 14, 410- 4114.

Gifford, F., Jr., 1977: "Tropospheric Relative Diffusion Observations,"

J. Appl. Meteorol., 16, 311-313.

Giglio, M., S. Musazzi, and U. Perini, 1984: "Low-Dimensionality Turbu-
lent Convection," Phys. Rev. Let., 53, 2402-2404.

Grassberger, P. and I. Procaccia, 1983: "Characterization of Strange
Attractors," Phys. Rev. Let., 50, 346-349.

Greenside, H. S., A. Wolf, J. Swift, and T. Pignataro, 1982: "Impracti-
cality of a Box-Counting Algorithm for Calculating the Dimensional-
ity of Strange Attractors," Phys, Rev. A, 25, 3453-3456.

Grossmann, S. and S. Thomae, 1982: "Correlation Decay of Lagrangian
Velocity Differences in Locally Isotropic Turbulence," Z. Phys. B -
Condensed Matter, 49, 253-261.

Hanna, S. R., 1984: "The Exponential Probability Density Function and
* Concentration Fluctuations in Smoke Plumes," Bound. Lay. Meteorol.,

29, 361-375.

Hentschel, H. G. E. and I. Procaccia, 1982: "Intermittency Exponent in
Fractally Homogeneous Turbulence," Phys. Rev. Let., 49, 1158-1161.

116

" " .°"" "% "' " 4 % %% % " ° " " ""



b,

Hentschel, H. G. E. and I. Procaccia, 1983a: "Fractal Nature of Turbu-
lence as Manifested in Turbulent Diffusion," Phys. Rev. A, 27,
1266-1269.

Hentschel, H. G. E. and I. Procaccia, 1983b: "Passive Scalar Fluctua-
tions in Intermittent Turbulence with Applications to Wave Propaga-
tion," Phys. Rev. A, 28, 417-426.

Hentschel, H. G. E. and I. Procaccia, 1984: "Relative Diffusion in
Turbul2nt Media: The Fractal Dimension of Clouds," Phys. Rev. A,
29, 1461-1470.

Hofstadter, D. R., 1981: "Strange Attractors: Mathematical Patterns
Delicately Poised Between Order and Chaos," Sci. Amer., 245(5), 22-
43.

Kida, S., 1982: "Statistics of Active Regions in the a-Model of Turbu-
lence," Prog. Theor. Phys., 67, 1630-1632.

Kowe, R. and P. C. Chatwin, 1983: "On Modelling the Probability Density
Function of Concentration in Turbulent Shear Flows," Proc. 8th
Australasian Fluid Mech. Conf., Univ. of Newcastle, N.S.W.,
3A.5-3A.8.

Kraichnan, R. H., 1974: "On Kolmogorov's Inertial-Range Theories," J.
Fluid Mech., 62, 305-330.

Kraichnan, R. H., 1985: "Intermittency and Attractor Size in Isotropic
Turbulence," Phys. Fluids, 28, 10-11.

Kunkel, K. E., E. W. Eloranta, and J. A. Weinman, 1980: "Remote Deter-
mination of Winds, Turbulence Spectra and Energy Dissipation Rates
in the Boundary Layer from Lidar Measurements," J. Atmos. Sci., 37,
978-985.

Lamb, R. G., 1981: "A Scheme for Simulating Particle Pair Motions in
Turbulent Fluid," J. Comput. Phys., 39, 329-346.

Lanford, 0. E., III., 1982: "The Strange Attractor Theory of Turbu-
lence," Ann. Rev. Fluid Mech., 14, 347-364.

Leonard, A., 1985: "Computing Three-Dimensional Incompressible Flows
with Vortex Elements," Ann. Rev. Fluid Mech., 17, 523-559.

Levich, E. and A. Tsinober, 1983: "Helical Structures, Fractal Dimen-
sions and Renormalization-Group Approach in Homogeneous Turbu-
lence," Phys. Let., 96A, 292-298.

117

! .. ... . . . . ..-. . . . .. .. . .. . .



-' Lilly, D. K., 1984: "Some Facets of the Predictability Problem for

Atmospheric Mesoscales," Amer. Inst. Phys. Conf. Proc. 106,
287-294.

Long, R. R., 1982: "A New Theory of the Energy Spectrum," Bound. Lay.

Meteorol., 24, 137-160.

Lorenz, E. N., 1963: "Deterministic Nonperiodic Flow," J. Atmos. Sci.,
20, 130-141.

Lorenz, E. N., 1980: "Attractor Sets and Quasi-Geostrophic

Equilibrium," J. Atmos. Sci., 37, 1685-1699.

Lovejoy, S., 1982: "The Area-Perimeter Relationship for Rain and Cloud

Areas," Science, 216, 185-187.

Lovejoy, S. and B. B. Mandelbrot, 1985: "Fractal Properties of Rain,
and A Fractal Model," Tellus, 37A, 209-232.

Lovejoy, S. and D. Schertzer, 1983: "Buoyancy, Shear, Scaling and
Fractals," Preprints 6th Symposium on Turbulence and Diffusion,

Boston, MA, 102-105.

Lovejoy, S. and D. Schertzer, 1985: "Generalized Scale Invariance in

the Atmosphere and Fractal Models of Rain," Water Resour. Res., 21,
1233-1250.

Lovejoy S. and D. Schertzer, 1986: "Scale Invariance, Symmetries,
Fractals, and Stochastic Simulations of Atmospheric Phenomena,"

Bull. Amer. Meteorol. Soc., 67, 21-32.

Lovejoy, S., D. Schertzer, and P. Ladoy, 1986: "Fractal Characteriza-

tion of inhomogeneous Geophysical Measuring Networks," Nature, 319,
43-44.

Ludwig, F. L., 1986: "Flow Simulation Using Vortex Methods," Report for
Stanford University (Prof. J. Spreiter), 31 pp.

Ludwig, F. L. and K. C. Nitz, 1986: "Analysis of Lidar Cross-Sections
to Determine Spatial Structure of Material in Smoke Plumes," to
appear in Proc. Smoke/Obscurants Symposium X, Harry Diamond Labs.,

Adelphl, MD, 10 pp.

Ludwig, F. L. and K. C. Nitz, and A. Valdes, 1984: "Techniques for

Studying the Spatial Distribution of Clear Patches in Smoke
Plumes," Proc. Smoke/Obscurants Symposium VIII, Harry Diamond
Labs., Adelphi, MD, 231-241.

118

::: : : :: : : :: : :: : :: : : . : : : : : :: :,



Ludwig, F. L. , K. C. Nitz, and A. Valdes, 1984: "Spatial Fluctuations
of Concentration in Smoke Plume Cross-Sections,"Preprints 4th Joint
Conf. on Appl. of Air Pol. Meteorol. and 3rd Conf. on Mountain
Meteorol., Portland, OR, 51-54.

Lundgren, T. S., 1982: "Strained Spiral Vortex Model for Turbulent Fine
Structure," Phys. Fluids, 25, 2193-2203.

Mandelbrot, B. B., 1974: "Intermittent Turbulence in Self-Similar
Cascades: Divergence of High Moments and Dimension of the
Carrier," J. Fluid Mech., 62, 331-358.

Mandelbrot, B. B., 1975: "On the Geometry of Homogeneous Turbulence,
with Stress on the Fractal Dimension of the Iso-Surfaces of
Scalars," J. Fluid Mech., 72, 401-416.

Mandelbrot, B. B., 1977: "Fractals and Turbulence: Attractors and
Dispersion," Lecture Notes in Mathematics, Turbulence Seminars,
(ed. P. Bernard and T. Ratiu) Springer-Verlag, Berlin, 83-93.

Mandelbrot, B. B., 1977: "Intermittent Turbulence and Fractal Dimen-
sion: Kurtosis and The Spectral Exponent 5/3+8," Lecture Notes in

* Mathematics, Turbulence and Navier-Stokes Equations, (ed. R.
Temam) Springer-Verlag, Berlin, 121-145.

Mandelbrot, B. B., 1983: The Fractal Geometry of Nature, W. H. Freeman

and Co., NY, 468 pp.

May, R. M., 1976: "Simple Mathematical Models with Very Complicated
Dynamics," Nature, 261 ,459-467.

Medler, C. L., L. M. Gelberg, and R. P. Burkhart, 1986: "Graphical
Realization of Turbulent Smoke Plumes on the Pixar," to appear in
Proc. Smoke/Obscurants Symposium X, Harry Diamond Labs., Adelphi,
MD, 13 pp.

Moffatt, H. K., 1981: "Some Developments in the Theory of Turbulence,"
J. Fluid Mech., 106, 27-47.

Mori, H., 1980: "Anomalous Diffusion of Vorticity in Fully-Developed
Turbulence," Suppl. Prog. Theor. Phys., 69, 111-121.

Mori, H., 1980: "Fractal Dimensions of Chaotic Flows of Autonomous
Dissipative Systems," Prog. Theor. Phys., 63, 1044-1047.

Nakano, T. and M. Nelkin, 1985: "Crossover Model for The Scaling Expon-

ents of Intermittent Fully Developed Turbulence," Phys. Rev. A, 31,1980-1982.

119

%:

4-%%%.4 ,X%%*% 4|.%S



Narayanan, M. A. B., S. Rajagopalan, and R. Narasimha, 1977: "Experi-
ments on the Fine Structure of Turbulence," J. Fluid Mech., 80,
237-257.

Ott, E., 1981: "Strange Attractors and Chaotic Motions of Dynamical
Systems," Rev. Mod. Phys., 53, 655-671.

Packard, N. H., J. P. Crutchfield, J. D. Farmer, and P. S. Shaw, 1980:
"Geometry from a Time Series," Phys. Rev. Let., 45, 712-716.

Pentland, A. P., 1984: "Fractal-Based Description of Natural Scenes,"
IEEE Trans. Pat. Anal. Mach. Intel., PAMI-6, 661-674.

Phythian, R. and W. D. Curtis, 1978: "The Effective Long-Time Diffu-
sivity for a Passive Scalar in a Gaussian Model Fluid Flow," J.
Fluid Mech., 89, 241-250.

Procaccia, I., 1984: "Fractal Structures in Turbulence," J. Stat.
Phys., 36, 649-663.

Raupach, M. R., 1983: "Near-Field Dispersion from Instantaneous Sources
in the Surface Layer," Bound. Lay. Meteorol., 27, 105-113.

Reynolds, W. C., 1985: "Class Notes for Mechanical Engineering 261B--
Turbulence Modeling," Stanford University, Stanford, California.

Richardson, L. F., 1926: "Atmospheric Diffusion Shown as a Distance- u

Neighbor Graph," Proc. Roy. Soc. London, Series A, 110, 709-737.*

Rollefson, J. P., 1978: "On Kolmogoroff's Theory of Turbulence and
Intermittency," Canadian J. Phys., 56, 1426-1441.

Rose, H. A. and P. L. Sulem, 1978: "Fully Developed Turbulence and
Statistical Mechanics," Le Journal de Physique, 39, 441-484.

Rosen, G., 1981: "Grid-Generated Isotropic Homogeneous Turbulence at
High Reynolds Numbers," Lettere al Nuovo Cimento, 31, 509-512.

Ruelle, D., 1982: "Large Volume Limit of the Distribution of Character-
istic Exponents in Turbulence," Commun. Math Phys., 87, 287-302.

Ruelle, D., 1984: "Conceptual Problems of Weak and Strong Turbulence,"
Physics Reports, 103, 81-85.

Sawford, B. L., 1983: "The Effect of Gaussian Particle-Pair Distribu-
tion Functions in the Statistical Theory of Concentration Fluctua-
tions in Homogeneous Turbulence," Quart. J. Roy. Meteorol. Soc.,
109, 339-354.

4
Cited indirectly.

120

...... ~............ ........................... ..... .,



UI

Scheffer, V. and M. J. Leray, 1976: "Geometrie Fractale de la Turbu-
lence: Equations de Navier-Stokes et Dimension de Hausdorff," C.
R. Acad. Sc. Paris, 282, A121-A122.

Schertzer, D. and S. Lovejoy, 1983: "The Dimension and Intermittency of
Atmospheric Dynamics," Turbulent Shear Flows 4, Springer Verlag,
Berlin, 7-33.

Siggia, E. D., 1978: "Model of Intermittency in Three-Dimensional
Turbulence," Phy. Rev. A, 17, 1166-1176.

Siggia, E. D., 1981: "Numerical Study of Small-Scale Intermittency in
Three-Dimensional Turbulence," J. Fluid Mech., 107, 375-406.

Sreenivasan, K. R., 1985: "On the Fine-Scale Intermittency of Turbu-
lence," J. Fluid Mech., 151, 81-103.

Storebo, P. B., 1983: "Concentration Pattern During Turbulent Disper-
sion," Bound. Lay. Meteorol., 27, 359-370.

Takens, F., 1981: Proceedings of the Symposium on Dynamical Systems and
Turbulence, (ed. D. A. Rand and L. A. Young), Springer, Berlin.

Van Dyke, M., 1982: An Album of Fluid Motion, Parabolic Press,
Stanford, California, 176 pp.

Voss, R. F., 1982: "Fourier Synthesis of Gaussian Fractals: 1/f
noises, landscapes, and flakes," unpublished paper from IBM Thomas
J. Watson Research Center, Yorktown Heights, NY, 20 pp.

Wyngaard, J. C., 1975: "Progress in Research on Boundary Layers and
Atmospheric Turbulences," Rev. Geophys. and Space Phy., 13,
716-720.

121

-



'9

.4
.4

S

/
'a
.4

* U-.,- *~

- ~~**~*~*** S~

b*. * * .. . - - Sm


